Skip to main content
Log in

Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The exoskeletons of sea urchins are composed of magnesiumbearing calcite. Individual test plates and spines behave as single crystals in polarized light or when examined by X-ray diffraction1–3. They do not, however, cleave like inorganic calcite crystals along the {104} hexagonal cleavage planes, but have conchoidal fracture surfaces reminiscent of amorphous glass. Discussion of this paradox revolves around whether the phase is monocrystalline2,4,5, multicrystalline6, or some combination thereof7, but provides no explanation for the phenomenon. To address this question we grew crystals of calcite in the presence of acidic glycoproteins extracted from within the mineralized hard parts of sea-urchin tests8–10. As a control we used analogous proteins from the calcitic layer of a mollusc shell which are known to be nucleators of calcite when adsorbed on a rigid substrate, but inhibitors when in solution11–13. We show that the sea urchin, but not the mollusc macromolecules selectively adsorb onto specific calcite crystal planes and with continued crystal growth are occluded inside the solid phase. These synthetic crystals fracture with a conchoidal cleavage similar to that observed in sea-urchin calcite. Thus intracrystalline proteins may be responsible for this phenomenon in biology and the manner in which they affect the mechanical properties of the crystals may also have interesting implications to the materials sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raup, D. M. in Physiology of Echinodermata. (ed. Boolootian, R. A.) 379–395 (Wiley, New York, 1966).

    Google Scholar 

  2. Blake, D. F., Peacor, D. R. & Allard, L. F. Micron, microscopia Acta 15(2), 85–90 (1984).

    Article  CAS  Google Scholar 

  3. Blake, D. F. & Peacor, D. R. SEM III, 321–328 (1981).

    Google Scholar 

  4. Nissen, H. Science 166, 1150–1152 (1969).

    Article  ADS  CAS  Google Scholar 

  5. Donnay, G. & Pawson, D. L. Science 166, 1147–1150 (1969).

    Article  ADS  CAS  Google Scholar 

  6. O'Neill, P. L. Science 213, 646–648 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Towe, K. Science 157, 1048–1050 (1967).

    Article  ADS  CAS  Google Scholar 

  8. Weiner, S. J. exp. Zool. 234, 7–15 (1985).

    Article  CAS  Google Scholar 

  9. Swift, D. M., Sikes, C. S. & Wheeler, A. P. J. exp. Zool. 240, 65–73 (1986).

    Article  CAS  Google Scholar 

  10. Benson, S. C., Benson, N. C. & Wilt, F. J. Cell Biol. 102, 1878–1886 (1986).

    Article  CAS  Google Scholar 

  11. Addadi, L. & Weiner, S. Proc. natn. Acad. Sci. U.S.A. 82, 4110–4114 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Addadi, L. & Weiner, S. Molec. Crystallogr. liq. Crystallogr. 134, 305–322 (1986).

    Article  CAS  Google Scholar 

  13. Addadi, L., Moradian, J., Shay, E., Maroudas, N. G. & Weiner, S. Proc. natn. Acad. Sci. U.S.A. 84, 2732–2736 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Addadi, L. et al. Nature 296, 21–26 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Emlet, R. B. Biol. Bull. 163, 264–275 (1982).

    Article  Google Scholar 

  16. Weiner, S. Biochemistry 22, 4139–4145 (1983).

    Article  CAS  Google Scholar 

  17. Worms, D. & Weiner, S. J. exp. Zool. 237, 11–20 (1986).

    Article  CAS  Google Scholar 

  18. Gray, W. R. Meth. Enzym. 11, 139–151 (1967).

    Article  CAS  Google Scholar 

  19. Weiner, S. & Tishbee, A. J. Chromat. 213, 501–506 (1981).

    Article  CAS  Google Scholar 

  20. Jones, B. M., Paabo, S. & Stein, S. J. liq. Chromatogr. 4, 565–586 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, A., Addadi, L. & Weiner, S. Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins. Nature 331, 546–548 (1988). https://doi.org/10.1038/331546a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331546a0

  • Springer Nature Limited

This article is cited by

Navigation