Skip to main content
Log in

Quantitative analyses of the early angiosperm radiation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Although the pattern of the early angiosperm radiation has been substantially clarified by palaeobotanical and stratigraphic investigations over the last 30 years1–3, knowledge of associated vegetational and floristic change remains limited. Quantitative analyses of Cretaceous fossil floras indicate that by ∼90 million years before present (BP) angiosperms had achieved widespread floristic dominance, at least in the Northern Hemisphere. Although some non-angiosperm plant groups show no pronounced shifts in diversity in association with the angiosperm radiation, others show marked declines that contribute to profound alterations in the composition of terrestrial plant communities. Comparative trends in systematic diversity suggest competitive displacement of cycadophytes and pteridophytes by angiosperms, but current evidence is not sufficient to exclude the probability of a more complex basis for mid-Cretaceous floristic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doyle, J. A. A. Rev. Ecol. Syst. 9, 365–392 (1978).

    Article  Google Scholar 

  2. Hickey, L. J. & Doyle, J. A. Bot. Rev. 43, 3–104 (1977).

    Article  Google Scholar 

  3. Friis, E. M., Chaloner, W. G. & Crane, P. R. (eds) The Origins of Angiosperms and their Biological Consequences (Cambridge University Press, 1987).

  4. Muller, J. Bot. Rev. 47, 1–142 (1981).

    Article  Google Scholar 

  5. Muller, J. Ann. Mo. bot. Gdn 71, 419–443 (1984).

    Article  Google Scholar 

  6. Niklas, K. J., Tiffney, B. H. & Knoll, A. H. Nature 303, 614–616 (1983).

    Article  ADS  Google Scholar 

  7. Niklas, K. J., Tiffney, B. H. & Knoll, A. H. in Phanerozoic Diversity Patterns: Profiles in Macroevolution (ed. Valentine, J. W.) 97–128 (Princeton University Press, 1985).

    Google Scholar 

  8. Niklas, K. J., Tiffney, B. H. & Knoll, A. H. in Evolutionary Biology Vol. 12 (eds Hecht, M. K., Steere, W. C. & Wallace, B.) 1–89 (Plenum, New York, 1980).

    Book  Google Scholar 

  9. Tiffney, B. H. in Paleobotany, Paleoecology and Evolution Vol. 2 (ed. Niklas, K. J.) 193–230 (Praeger, New York, 1981).

    Google Scholar 

  10. Knoll, A. H. in Extinctions (ed. Nitecki, M. H.) 21–68 (University of Chicago Press, 1984).

    Google Scholar 

  11. Knoll, A. H. in Community Ecology (eds Diamond, J. & Case, T. J.) 126–141 (Harper & Row, New York, 1986).

    Google Scholar 

  12. Crane, P. R. in The Origins of Angiosperms and their Biological Consequences (eds Friis, E. M., Chaloner, W. G. & Crane, P. R.) 107–144 (Cambridge University Press, 1987).

    Google Scholar 

  13. Koch, C. F. Paleobiology 4, 367–372 (1978).

    Article  Google Scholar 

  14. Ferguson, D. K. Rev. Palaeobot. Palynol. 46, 117–188 (1985).

    Article  Google Scholar 

  15. Signor, P. R. & Lipps, J. H. Spec. Pap. geol. Soc. Am. 190, 291–295 (1982).

    Google Scholar 

  16. Hughes, N. F. Bot. Rev. 43, 105–127 (1977).

    Article  Google Scholar 

  17. Bell, W. A. Bull. geol. Surv. Can. 13, 1–231 (1949).

    Google Scholar 

  18. Bell, W. A. Mem. geol. Surv. Can. 285, 1–331 (1956).

    Google Scholar 

  19. Bell, W. A. Mem. geol. Surv. Can. 293, 1–84 (1957).

    Google Scholar 

  20. Bell, W. A. Bull. geol. Surv. Can. 94, 1–76 (1963).

    Google Scholar 

  21. Kitchell, J.A. Paleobiology 11, 91–104 (1985).

    Article  Google Scholar 

  22. Crane, P. R. & Upchurch, G. R. Am. J. Bot. 74, 1722–1736 (1987).

    Article  Google Scholar 

  23. Kemper, E. Geol. Jb. A 96, 5–185 (1987).

    Google Scholar 

  24. Dilcher, D. L. & Crane, P. R. Ann. Mo. bot. Gdn 71, 351–383 (1984).

    Article  Google Scholar 

  25. Walker, J. W., Brenner, G. J. & Walker, A. G. Science 220, 1273–1275 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Crane, P. R., Friis, E. M. & Pedersen, K. R. Science 232, 852–854 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Walker, J. W. & Walker, A. G. Ann. Mo. bot. Gdn 7l, 464–521 (1984).

    Article  Google Scholar 

  28. Friis, E. M., Crane, P. R. & Pedersen, K. R. Nature 320, 163–164 (1986).

    Article  ADS  Google Scholar 

  29. Crane, P. R. Pl. Syst. Ecol. (in the press)

  30. Hughes, N. F. & McDougall, A. B. Reo. Palaeobot. Palynol. 50, 255–272 (1986).

    Article  Google Scholar 

  31. Sepkoski, J. I. Paleobiology 4, 223–251 (1978).

    Article  Google Scholar 

  32. Knoll, A. H., Niklas, K. J., Gensei, P. G. & Tiffney, B. H. Paleobiology 10, 34–47 (1984).

    Article  Google Scholar 

  33. Harland, W. B. et al. A Geologie Time Scale (Cambridge University Press, 1982).

    Google Scholar 

  34. Lesquereux, L. Monogr. U. S. geol Sun. 17, 1–400 (1892).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lidgard, S., Crane, P. Quantitative analyses of the early angiosperm radiation. Nature 331, 344–346 (1988). https://doi.org/10.1038/331344a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331344a0

  • Springer Nature Limited

This article is cited by

Navigation