Skip to main content
Log in

Oxygen isotope analyses and deep-sea temperature changes: implications for rates of oceanic mixing

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Since the first measurements were made more than thirty years ago1, analysis of oxygen isotopes in foraminifera from deep-sea sediments has gained widespread use as a palaeoclimatic and stratigraphic indicator. Isotopes stages are commonly used to define the ice ages2 but controversy still remains regarding the relative contributions of temperature and ice-volume change to the down-core δ18O record. For the past decade, temperature has commonly been considered a trivial portion of the signal3. Recent reports, however, suggest that as much as one-third of the measured δ18O variations can be ascribed to cooler glacial-maximum temperatures4,5. This interpretation requires mean deep-ocean temperatures <0 °C through much of late Quaternary time. Here we explore some of the consequences of this hypothesis for the heat budget of the deep sea, and conclude that either thermohaline overturn must have been faster than at present, or that cooling of the deep ocean at the glacial maximum may have been overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emiliani, C. J. Geol. 63, 538–578 (1955).

    Article  ADS  CAS  Google Scholar 

  2. Shackleton, N. J. & Opdyke, N. D. Quat. Res. 3, 39–55 (1973).

    Article  CAS  Google Scholar 

  3. Shackleton, N. J. Phil. Trans. R. Soc. B 280, 169–182 (1977).

    Article  ADS  Google Scholar 

  4. Chappell, J. & Shackleton, N. J. Nature 324, 137–140 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Labeyrie, L. D., Duplessy, J. C. & Blanc, P. L. Nature 327, 477–482 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Geol. Soc. Am. Bull. 64, 1315–1325 (1953).

    Article  ADS  CAS  Google Scholar 

  7. Shackleton, N. J. Nature 215, 15–17 (1967).

    Article  ADS  CAS  Google Scholar 

  8. Emiliani, C. in Late Cenozoic Glacial Ages (ed. Turekian, K.) 183–197 (Yale University Press, New Haven, Connecticutt, 1971).

    Google Scholar 

  9. CLIMAP Map and Chart Series MC-36 (Geol. Soc. America, Boulder, Colorado, 1981).

  10. Imbrie, J. et al. in Milankovitch and Climate (eds Berger, A. et al.) 269–305 (Reidel, Dordrecht, 1984).

    Google Scholar 

  11. Dodge, R. E., Fairbanks, R. G., Benninger, L. K. & Maurrasse, F. Science 219, 1423–1425 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Broecker, W. S. Science 188, 1116–1118 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Johnson, R. G. & Andrew, J. T. Palaeogeogr. Palaeoclimatol. Palaeoecol. 53, 107–138 (1986).

    Article  CAS  Google Scholar 

  14. Clark, D. L. et al. Geophys. Res. Lett. 13, 319–321 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Zahn, R., Markussen, B. & Thiede, J. Nature 314, 433–435 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Dillon, W. P. & Oldale, R. N. Geology 6, 56–60 (1978).

    Article  ADS  Google Scholar 

  17. Veeh, H. H. & Veevers, J. J. Nature 226, 536–537 (1970).

    Article  ADS  CAS  Google Scholar 

  18. Chappell, J. Search 14, 99–101 (1983).

    Google Scholar 

  19. Knauss, J. A. Introduction to Physial Oceanography (Prentice Hall, Englewood Cliffs, New Jersey, 1978).

    Google Scholar 

  20. Gordon, A. L. in Numerical Models of Ocean Circulation 39–53 (National Academy of Sciences, Washington, DC, 1975).

    Google Scholar 

  21. Menard, H. W. & Smith, S. M. J. geophys. Res. 71, 4305–4325 (1966).

    Article  ADS  Google Scholar 

  22. Bryan, K. J. comput. Phys. 4, 347–376 (1969).

    Article  ADS  Google Scholar 

  23. Broecker, W. S., Mix, A. C., Andree, A. & Oeschger, H. Nucl. Instrum. Meth. Phys. Res. 5, 331–339 (1984).

    Article  ADS  Google Scholar 

  24. Langseth, M. & Von Herzen, R. The Sea Vol. 4, 299–345 (Wiley, New York, 1971).

    Google Scholar 

  25. Garrett, C. Dyn. Atmos. Oceans 3, 239–265 (1979).

    Article  ADS  Google Scholar 

  26. Rind, D. & Peteet, D. Quat. Res. 24, 1–22 (1985).

    Article  Google Scholar 

  27. Broecker, W. S. Quat. Res. 26, 121–134 (1986).

    Article  CAS  Google Scholar 

  28. Andree, M. et al. Clim. Dyn. 1, 53–62 (1986).

    Article  Google Scholar 

  29. Broecker, W. S. et al. (manuscript in preparation).

  30. Mix, A. C. & Fairbanks, R. G. Earth planet. Sci. Lett. 73, 231–243 (1985).

    Article  ADS  CAS  Google Scholar 

  31. Boyle, E. A. & Keigwin, L. D. Earth planet. Sci. Lett. 76, 135–150 (1985/86).

    Article  ADS  CAS  Google Scholar 

  32. Broecker, W. S. in Late Cenozoic Glacial Ages (ed. Turekian, K.) 239–265 (Yale University Press, New Haven, 1971).

    Google Scholar 

  33. Boyle, E. A. & Keigwin, L. D. Nature (in the press).

  34. Zahn, R., Sarnthein, M. & Erlenkeuser, H. Paleoceanography (in the press).

  35. Broecker, W. S., Peteet, D. M. & Rind, D. Nature 315, 21–26 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mix, A., Pisias, N. Oxygen isotope analyses and deep-sea temperature changes: implications for rates of oceanic mixing. Nature 331, 249–251 (1988). https://doi.org/10.1038/331249a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331249a0

  • Springer Nature Limited

This article is cited by

Navigation