Skip to main content
Log in

Vertical oceanic nutrient fractionation and glacial/interglacial CO2cycles

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Ice-core studies have established that atmospheric carbon dioxide is about 80 parts per million by volume (p.p.m.v.) lower during cold glacial climates than it is during warm interglacial times1–8. A number of models have been offered for this phenomenon9–12. These models are consistent with observation of an enhanced carbon isotope contrast between surface and deep waters, but they also predict dissolved oxygen depletions which are inconsistent with the widespread occurrence of glacial-age fossils from aerobic benthic organisms. Recent observations on changes in the vertical oceanic chemical structure provide a new mechanism to control glacial/interglacial CO2 change. Palaeochemical evidence shows that nutrients and metabolic CO2 are shifted from intermediate waters into deeper waters during glacial times13–15. At the outset of this redistribution, increased deep dissolved CO2 concentrations raise carbonate dissolution above that required for a steady-state input/output balance. Oceanic alkalinity then increases until steady-state dissolution rates are restored. Here I propose that atmospheric CO2 decreases in direct response to increased oceanic alkalinity. Although the carbonate response factor in atmospheric CO2 has been noted before, it has not been linked with vertical nutrient rearrangements. The withdrawal of nutrients from inter-mediate waters of the ocean also prevents oxygen depletion in these waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnola, J. M., Raynaud, D., Neftel, A. & Oeschger, H. Nature 303, 410–413 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Barnola, J. M., Raynaud, D., Korotkevitch, Y. S. & Lorius, C. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Berner, B., Stauffer, B. & Oeschger, H. Nature 275, 53–55 (1979).

    Google Scholar 

  4. Delmas, R. J., Ascencio, J.-M. & Legrand, M. Nature 284, 155–157 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Neftel, A., Moor, E., Oeschger, H. & Stauffer, B. Nature 315, 45–47 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Zumbrunn, R. Nature 295, 220–223 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Oeschger, H. et al. Am. geophys. Un. Monogr. 29, 299–306 (1984).

    Google Scholar 

  8. Oeschgar, H., Stauffer, B., Finkel, R. & Langway, C. C. Am. geophys. Un. Monogr. 32, 132–142 (1985).

    Google Scholar 

  9. Broecker, W. S. Geochim. cosmochim. Acta 46, 1689–1705 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Sarmiento, J. L. & Toggweiler, J. R. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Siegenthaler, U. & Wenk, Th. Nature 308, 624–625 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Knox, S. & McElroy, M. J. geophys. Res. 89, 4629–4637 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Boyle, E. & Keigwin, L. D. Nature 330, 35–40 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Zahn, R., Sarnthein, M. & Erlenkeuser, H. Paleoceanography (in the press).

  15. Oppo, D. & Fairbanks, R. G. Earth planet. Sci. Lett. (in the press).

  16. Takahashi, T., Broecker, W. S. & Langer, S. J. geophys. Res. 90, 6907–6924 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Broecker, W. S. Prog. Oceanogr. 11, 151–197 (1982).

    Article  ADS  Google Scholar 

  18. Edmond, J. M. & Gieskes, J. M. Geochim. cosmochim. Acta 34, 1261–1291 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Menard, H. W. & Smith, S. M. J. geophys. Res. 71, 4305–4326 (1966).

    Article  ADS  Google Scholar 

  20. Shackleton, N. J., Hall, M. A,, Line, J. & Shuxi, C. Nature 306, 319–322 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Broecker, W. S. & Peng, T. H. Global biogeochem. Cycles 1, 15–30 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Shackleton, N. J. & Pisias, N. G. Am. geophys. Un. Monogr. 32, 313–318 (1984).

    Google Scholar 

  23. Curry, W. B. & Crowley, T. J. Paleoceanography 2, 449–578 (1987).

    Article  ADS  Google Scholar 

  24. Hammer, C. U., Clausen, H. B. & Tauber, H. Radiocarbon 28, 284–291 (1986).

    Article  CAS  Google Scholar 

  25. Takahashi, T., Broecker, W. S. & Bainbridge, A. E. Scope 16, 159–200 (Wiley, New York, 1981)

  26. Shackleton, N. J. & Chappell, J. Nature 324, 137–140 (1986).

    Article  ADS  Google Scholar 

  27. Lonsdale, P. Deep Sea Res. 24, 1065–1101 (1977).

    Article  ADS  Google Scholar 

  28. Emerson, S. Am. geophys. Un. Monogr. 32, 78–88 (1984).

    Google Scholar 

  29. Pedersen, T. F. Geology 11, 16–19 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Curry, W. & Lohmann, G. P. Am. geophys. Un. Monogr. 32, 285–302 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyle, E. Vertical oceanic nutrient fractionation and glacial/interglacial CO2cycles. Nature 331, 55–56 (1988). https://doi.org/10.1038/331055a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331055a0

  • Springer Nature Limited

This article is cited by

Navigation