Skip to main content
Log in

Atmospheric iridium at the South Pole as a measure of the meteoritic component

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The measurement of iridium (Ir) in atmospheric samples is important because it gives information on the short-term flux of extraterrestrial material without interference from fragmentation products from large bodies. Such information cannot be obtained from sediment samples, because sediment samples integrate over millions of years and include contributions of large bodies impacted in that time period. In addition to flux information, through the analysis of Ir in atmospheric samples we can also evaluate a possible contribution of extraterrestrial material to the unusual enrichment of chalcophilic elements in a remote atmosphere. We present here a determination of average particle-borne Ir concentration in the South Pole atmosphere. The average values of (7.3±3.1)×l0–17g m–3 suggests that the concentration of extraterrestrial material in the South Pole atmosphere is not large enough to explain the enrichments of anomalously enriched elements; however, meteoritic material contributes significantly to the observed concentrations of Co, Fe and Mn. We estimate an accretion rate for background extraterrestrial material of 11,000 tons annually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lal, D., Peters, B. in Handbuch Der Physik Vol. 46(2) 551–612 (ed. Flugge, S.) (Springer, Berlin, 1967).

    Google Scholar 

  2. Cunningham, W. C. & Zoller, W. H. J. Aerosol Sci. 12, 367–384 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Maenhaut, W., Zoller, W. H. & Coles, D. G. J. geopys. Res. 84, 2421–2431 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Zoller, W. H., Parrington, J. R., Kotra, J. M. P. Science 222, 1118–1121 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Tuncel, G. thesis, Univ. Maryland (1985).

  6. Parkin, D. W. & Tilles, D. Science 159, 936–946 (1968).

    Article  ADS  CAS  Google Scholar 

  7. Fenner, F. D. & Presley, B. J. Nature 312, 260–263 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Taylor, S. R. Geochim. cosmochim. Acta 28, 1273–1285 (1972).

    Article  ADS  Google Scholar 

  9. Crocket, J. H. & Kuo, H. Y. Geochim. cosmochim. Acta 43, 831–842 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Boutron, C. & Lorius, C. Nature 277, 1–3 (1979).

    Article  Google Scholar 

  11. Legrand, M. R. & Delmas, R. J. Atmos. Environ. 18, 1867–1874 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Kumai, M. J. atmos. Sci. 33, 833–841 (1976).

    Article  ADS  Google Scholar 

  13. Turco, R. P., Toon, O. B., Hammil, P. & Whitten, R. C. J. geophys. Res. 86, 1113–1128 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Sulek, A., M.S. thesis, Univ. Maryland (1979).

  15. Thompson, L. G. & Thompson, E. M. Science 212, 812–814 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Mason, B. US geol. Surv. Prof. Pap. 440-8-1, (1979).

  17. Brocas, J. & Piciotto, E. J. geophys. Res. 72, 2229–2236 (1967).

    Article  ADS  CAS  Google Scholar 

  18. Bibron, R. R. et al. Earth planet. Sci. 21, 109–116 (1974).

    Article  ADS  CAS  Google Scholar 

  19. Ganapathy, R. Science 220, 1158–1161 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Uematsu, M. & Duce, R. A. Nature (in the press).

  21. Takahashi, H., Yokoyoma, Y., Fireman, E. L. & Lorius, C. Lunar planet. Sci. 9, 1131–1133 (1979).

    ADS  Google Scholar 

  22. Hughes, D. W. in Cosmic Dust (ed. McDonnell, J. A. M.) 123 (Wiley, Chichester, 1978).

    Google Scholar 

  23. Kyte, F. T. & Wasson, J. T. Science 232, 1225 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Gran, E., Zook, H. A., Fechtig, H. & Giese, R. H. Icarus 62, 244 (1982).

    Article  ADS  Google Scholar 

  25. Murrel, M. T., Davis, P. A., Nishisumi, K. & Millard, H. T. Geochim. cosmochim. Acta 44, 2067–2074 (1980).

    Article  ADS  Google Scholar 

  26. McGorkell, R., Fireman, E. L. & Langway, C. C. Science 156, 1690–1692 (1967).

    Article  ADS  Google Scholar 

  27. Mulotak, V. I. Kosmokhim. Metroid. 6th Mater. Vses. Symp. 64–72 (1982).

  28. Shedlowsky, J. P. & Paisley, S. Tellus 18, 499–503 (1966).

    ADS  Google Scholar 

  29. Patterson, H. & Rostchi, H. Geochim. cosmochim. Acta 2, 81–90 (1952).

    Article  ADS  Google Scholar 

  30. Bonner, F. T. & Laurenco, A. S. Nature 207, 933–935 (1965).

    Article  ADS  CAS  Google Scholar 

  31. Harris, R. C., Crockett, J. H. & Stainton, M. Geochim. cosmochim. Acta 32, 1049–1056 (1968).

    Article  ADS  Google Scholar 

  32. Barker, J. L. & Anders, E. Geochim. cosmochim. Acta 32, 627–645 (1968).

    Article  ADS  CAS  Google Scholar 

  33. Ozima, M., Tagayanagi, M. & Zashu, S. Nature 311, 448–450 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuncel, G., Zoller, W. Atmospheric iridium at the South Pole as a measure of the meteoritic component. Nature 329, 703–705 (1987). https://doi.org/10.1038/329703a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329703a0

  • Springer Nature Limited

This article is cited by

Navigation