Skip to main content

Advertisement

Log in

Cloud optical depth feedbacks and climate modelling

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Recent general circulation model studies1–3 performed to assess the equilibrium climate response to doubling atmospheric CO2 suggested a global mean surface warming of 3.5–4.2 °C. Part of this warming was attributed to a change in cloud cover1. But all of these studies neglected changes of cloud optical properties which were shown to provide a substantial negative feedback in radiative-convective models if the cloud liquid water content was assumed to increase with increasing temperature4,5. This hypothesis is examined in a climate model where clouds are simulated interactively with dynamics, radiation and hydrological cycle6. The thermal forcing is introduced by a 2% increase of the solar constant which is equivalent to a doubling of CO21. The results show the anticipated increase of cloud liquid water and cloud optical depth. A feedback analysis of the simulated climate change supports earlier suggestions of the importance of cloud optical depth feedbacks4,5. The net effect of clouds is to provide a negative feedback on surface temperature, rather than the positive feedback found in earlier general circulation model studies without considering cloud optical depth feedbacks1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansen, J. E. et al. Geophys. Monogr. 29, 130–163 (1984).

    Google Scholar 

  2. Washington, W. M. & Meehl, G. A. J. geophys. Res. 89, 9475–9503 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Wetherald, R. T. & Manabe, S. Clim. Change 8, 5–23 (1986).

    Article  ADS  Google Scholar 

  4. Charlock, T. P. Tellus 34, 245–254 (1982).

    Article  ADS  Google Scholar 

  5. Somerville, R. C. J. & Remer, L. A. J. geophys. Res. 89, 9668–9672 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Roeckner, E. & Schlese, U. Proc. ECMWF Workshop on Cloud Cover Parameterization in Numerical Models, Reading, UK, 87–108 (European Centre for Medium Range Weather Forecasts, 1985).

    Google Scholar 

  7. Hense, A. et al. Q. Jl R. met. Soc. 108, 231–252 (1982).

    Article  ADS  Google Scholar 

  8. Sundqvist, H. Q. Jl R. met Soc. 104, 677–690 (1978).

    Article  ADS  Google Scholar 

  9. Braham, R. R. Jr Bull Am. met. Soc. 49, 343–353 (1968).

    Article  Google Scholar 

  10. Stephens, G. L. J. atmos. Sci 35, 2123–2132 (1978).

    Article  ADS  Google Scholar 

  11. Pollard, D. et al. J. phys. Oceanogr. 13, 754–768 (1983).

    Article  ADS  Google Scholar 

  12. Schlesinger, M. E. Adv. Geophys. 26, 141–235 (1984).

    Article  ADS  Google Scholar 

  13. Feigelson, E. M. Beitr. Phys. Atmos. 51, 203–229 (1978).

    CAS  Google Scholar 

  14. Wetherald, R. T. & Manabe, S. J. atmos. Sci. 37, 1485–1510 (1980).

    Article  ADS  Google Scholar 

  15. Ohring, G. & Gruber, A. Adv. Geophys. 25, 237–304 (1983).

    Article  ADS  Google Scholar 

  16. Oort, A. H. NOAA Prof. Paper No. 14 (1983).

  17. Jaeger, L. Ber. Deut. Wetterdienstes, Offenbach 139, 1–38 (1976).

    Google Scholar 

  18. Stephens, G. L. et al. J. geophys. Res. 86, 9739–9760 (1981).

    Article  ADS  Google Scholar 

  19. Walsh, J. E. & Johnson, C. M. J. phys. Oceanogr. 9, 580–590 (1979).

    Article  ADS  Google Scholar 

  20. Zwally, H. J. et al. Science 220, 1005–1012 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roeckner, E., Schlese, U., Biercamp, J. et al. Cloud optical depth feedbacks and climate modelling. Nature 329, 138–140 (1987). https://doi.org/10.1038/329138a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329138a0

  • Springer Nature Limited

This article is cited by

Navigation