Skip to main content

Advertisement

Log in

A molecular mechanism for long-term sensitization in Aplysia

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Sensitization of the gill- and siphon-withdrawal reflex in Aplysia is thought to result from a set of molecular processes with different time courses1: short-term sensitization is explained by cyclic AMP-dependent modulation of ion-channel function in sensory neurons lasting minutes2; memory that endures for hours or longer, by the expression and distribution within the neurons of new gene products3. Because gene induction and axonal transport are relatively slow, there may also be a need for a distinct form of intermediate memory to bridge the short- and long-term processes4. We now report that a protocol producing long-term sensitization results in a decrease in the amount of regulatory subunits of the cAMP-dependent protein kinase in animals 24 h after training, with no effect on the catalytic subunit. The loss appears to be post-translational. Because a decrease in the ratio of regulatory to catalytic subunits would result in elevated kinase activity after cAMP has returned to its unstimulated concentration in sensory cells, it could be the molecular mechanism of intermediate memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goelet, P., Castellucci, V. F., Schacher, S. & Kandel, E. R. Nature 322, 419–422 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Kandel, E. R. & Schwartz, J. H. Science 218, 433–443 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Montarolo, P. G. et al. Science 234, 1249–1254 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Schwar tz, J. H. & Greenberg, S. M. A. Rev. Neurosci. 10, 459–476 (1987).

    Article  CAS  Google Scholar 

  5. Bernier, L., Castellucci, V. F., Kandel, E. R. & Schwartz, J. H. J. Neurosci. 2, 1682–1691 (1982).

    Article  CAS  Google Scholar 

  6. Frost, W. N., Castellucci, V. F., Hawkins, R. D. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 82, 8266–8269 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Eppler, C. M., Palazzolo, M. J. & Schwartz, J. H. J. Neurosci. 2, 1692–1704 (1982).

    Article  CAS  Google Scholar 

  8. Eppler, C. M., Bayley, H., Greenberg, S. M. & Schwartz, J. H. J. Cell Biol. 102, 320–321 (1986).

    Article  CAS  Google Scholar 

  9. Walters, E. T., Byrne, J. H., Carew, T. J. & Kandel, E. R. J. Neurophysiol. 50, 1543–1559 (1983).

    Article  CAS  Google Scholar 

  10. Greenberg, S. M., Bernier, L. & Schwartz, J. H. J. Neurosci. 7, 291–301 (1987).

    Article  CAS  Google Scholar 

  11. Castellucci, V. F. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7492–7496 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Castellucci, V. F., Nairn, A., Greengard, P., Schwartz, J. H. & Kandel, E. R. J. Neurosci. 2, 1673–1681 (1982).

    Article  CAS  Google Scholar 

  13. Scholz, K. P. & Byrne, J. H. Science 235, 685–687 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Weiss, K. R., Mandelbaum, D. E., Schonberg, M. & Kupfermann, I. J. Neurophysiol. 42, 791–803 (1979).

    Article  CAS  Google Scholar 

  15. Potter, R. L. & Taylor, S. S. J. biol. Chem. 255, 9706–9712 (1980).

    CAS  PubMed  Google Scholar 

  16. Steinberg, R. A. & Agard, D. A. J. biol. Chem. 256, 10731–10734 (1981).

    CAS  PubMed  Google Scholar 

  17. Beer, D. G., Butley, M. S. & Malkinson, A. M. Arch. Biochem. Biophys. 228, 207–219 (1984).

    Article  CAS  Google Scholar 

  18. DeLotto, R. & Spierer, P. Nature 323, 688–692 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Rogers, S., Wills, R. & Rechsteiner, M. Science 234, 364–368 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Corbin, J. D., Sugden, P. H., West, L., Flockhart, D. A., Lincoln, T. M. & McCarthy, D. J. biol. Chem. 253, 3997–4003 (1978).

    CAS  PubMed  Google Scholar 

  21. Rangel-Aldao, R., Kupiec, J. W. & Rosen, O. M. J. biol. Chem. 254, 2499–2508 (1979).

    CAS  PubMed  Google Scholar 

  22. Kerlavage, A. R. & Taylor, S. S. J. biol. Chem. 257, 1749–1754 (1982).

    CAS  PubMed  Google Scholar 

  23. Walter, U., Costa, M. R. C., Breakefield, X. O. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 76, 3251–3255 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Bubis, J. & Taylor, S. S. Biochemistry 24, 2163–2170 (1985).

    Article  CAS  Google Scholar 

  25. Schaffner, W. & Weissman, C. Analyt. Biochem. 56, 502–514 (1973).

    Article  CAS  Google Scholar 

  26. Schwechheimer, K. & Hofmann, F. J. biol. Chem. 252, 7690–7696 (1977).

    CAS  PubMed  Google Scholar 

  27. Rannels, S. R., Beasley, A. & Corbin, J. D. Meth. Enzym. 99, 55–62 (1983).

    Article  CAS  Google Scholar 

  28. Builder, S. E., Beavo, J. A. & Krebs, E. G. J. Biochem. 255, 3514–3519 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, S., Castellucci, V., Bayley, H. et al. A molecular mechanism for long-term sensitization in Aplysia. Nature 329, 62–65 (1987). https://doi.org/10.1038/329062a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329062a0

  • Springer Nature Limited

This article is cited by

Navigation