Skip to main content
Log in

Noble-gas enrichment in vapour-growth diamonds and the origin of diamonds in ureilites

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Ureilites show high carbon contents comparable with those of CM chondrites1,2. One of the major questions about ureilites is why they contain large amounts of noble gases concentrated in carbon-rich veins3,4. Diamond is shown to be one of the noble-gas carriers, while graphite is gas-free5. We synthesized diamonds by chemical vapour deposition (CVD)6−8 from gaseous mixtures of H2 and CH4 including Ar, and examined the Ar trapped in diamond by mass spectrometry employing the stepwise heating technique. The partial pressure of 36Ar in the gaseous mixture during the synthesis of diamond was 5.3×10−6 atm. The content of 36Ar was about as great as 8×10−6 cm3 STP g−1 which was extracted at 2,000°C. Meanwhile, the 36Ar concentration in graphite was much less than 5% of that in diamonds. These results suggest that diamonds in ureilites may have been directly formed from the solar nebula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. Vdovykin, G. P. Space Sci. Rev. 10, 483–510 (1970). 2. Grady, M. M., Wright, I. P., Swart, P. K. & Pillinger, C. T. Geochim. cosmochim. Acta 49, 903–915 (1985). 3. Weber, H. W., Hintenberger, H. & Begemann, F. Earth planet. Sci. Lett. 13, 205–209 (1971). 4. Weber, H. W., Begemann, F. & Hintenberger, H. Earth planet. Sci. Lett. 29, 81–90 (1976). 5. Gobel, R., Ott, U. & Begemann, F. J. geophys. Res. 83, 855–867 (1978). 6. Derjaguin, B. V. et al. J. Crystal Growth 2, 380–384 (1968). 7. Matsumoto, S., Sato, Y., Kamo, M. & Setaka, N. Jap. J. appl. Phys. 21, L183–L185 (1982). 8. Shindo, H., Miyamoto, M., Matsuda, J. & Ito, K. Meteoritics 20, 754 (1985). 9. Sato, Y., Matsumoto, S., Kamo, M. & Setaka, N. /. Surface Sci. Soc. Jap. 5, 54–60 (1984). 10. Grossman, L. & Larimer, J. W. Rev. Geophys. Space Phys. 12, 71–101 (1974). 11. Berkley, J. L. et al. Geochim. cosmochim. Acta 40, 1429–1437 (1976). 12. Miyamoto, M., Takeda, H. & Toyoda, H. /. geophys. Res. 90, 116–122 (1985). 13. Begemann, F. & Ott, U. Geochim. cosmochim. Acta 47, 975–971 (1983). 14. Lewis, R. S., Ming, T., Wacker, J. F. & Steel, E. Lunar planet. Sci. XVIII (in the press). 15. Ott, U., Lohr, H. P. & Begemann, F. Meteoritics 19, 287–288 (1984). 16. Wacker, J. F. Geochim. cosmochim. Acta 50, 633–642 (1986). 17. Anders, E. & Ebihara, M. Geochim. cosmochim. Acta 46, 2363–2380 (1982). 18. Honda, M., Ozima, M., Nakada, Y. & Onaka, T. Earth planet. Sci. Lett. 43,197–200 (1979). 19. Jambon, A., Weber, H. & Braun, O. Geochim. cosmochim. Acta 50, 401–408 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukunaga, K., Matsuda, Ji., Nagao, K. et al. Noble-gas enrichment in vapour-growth diamonds and the origin of diamonds in ureilites. Nature 328, 141–143 (1987). https://doi.org/10.1038/328141a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/328141a0

  • Springer Nature Limited

This article is cited by

Navigation