Skip to main content
Log in

Small-scale structures in the north-west Atlantic sub-tropical front

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Mixing in the ocean thermocline is thought to occur in part by random superposition of internal waves, leading to occasional episodes of shear instability1. Statistical models of the resulting mixing have been formulated2,3 which are roughly consistent with the few available direct estimates of average mixing rates4–6. However, clear evidence of the direct association between individual mixing patches and wave instability has been lacking7. Here we report the use of a new fine- and microstructure profiler during the Frontal Air–Sea Interaction Experiment (FASINEX)8 to investigate mixing processes in the sub-tropical front of the north-west Atlantic in great detail. The novel combination of fine-scale and microstructure sensors on one vehicle provided sufficient resol-ution to reveal quantitative evidence of shear instability in the thermocline. The strongest sub-surface mixing was found in association with small-vertical-scale internal waves that may have been influenced by the velocity and density structure of the front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. Garrett, C. J. R. & Munk, W. H. Deep Sea Res. 19, 823–832 (1972). 2. Gargett, A. E. & Holloway, G. /. mar. Res. 42, 15–27 (1984). 3. Desaubies, Y. & Smith, W. K. /. phys. Oceanogr. 12, 1245–1259 (1982). 4. Gargett, A. E. /. mar. Res. 42, 359–393 (1984). 5. Mourn, J. N. & Osborn, T. R. /. phys. Oceanogr. 16, 1250–1258 (1986). 6. Gregg, M. C. in Internal Gravity Waves and Small–Scale Turbulence: Proc. (eds Muller, P. & Pujalet, R.) 1–24 (Hawaii Institute of Geophysics, Honolulu 1984). 7. Gregg, M. C., D'Asaro, E. A., Shay,, T. J. & Larson, N. /. phys. Oceanogr. 16,856–885 (1986). 8. Stage, S. A. & Weller, R. A. Bull. Am. met. Soc. 66, 1522–1520 (1985). 9. Hayes, S. P., Milburn, H. B. & Ford, E. F. /. atmos. ocean. Technol. 1, 220–236 (1984). 10. Osborn, T. R. J. phys. Oceanogr. 4, 109–115 (1974). 11. Pollard, R. Nature 323, 433–434 (1986). 12. Leaman, K. D. & Sanford, T. B. /. geophys. Res. 15, 1975–1978 (1975). 13. Osborn, T. R. & Cox, C. S. Geophys. Fluid Dyn. 3, 321–345 (1972). 14. Miles. J. W. .7. Fluid Dyn. 10, 496–508 (1961). 15. Rohr, J. J., Helland, K. N., Itsweire, E. C. & Van Atta, C. W. in 5th Int. Symp. on Turbulent Shear Flows, Cornell Univesity, Ithaca, New York, August 7–9, 1985 (ed. Lumley, J. L.) 21–1–22–6 (Pennsylvania State University, 1985). 16. See Oakey, N. S. J. phys. Oceanogr. 12, 256–271 (1982). 17. Garrett, C. J. R. & Munk, W. H. Geophys. Fluid Dyn. 2, 225–264 (1972). 18. Booker, J. R. & Bretherton, F. P. /. Fluid Mech. 27, 513–539 (1967). 19. Kunze, E. & Sanford, T. B. /. phys. Oceanogr. 14, 566–581 (1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toole, J., Schmitt, R. Small-scale structures in the north-west Atlantic sub-tropical front. Nature 327, 47–49 (1987). https://doi.org/10.1038/327047a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/327047a0

  • Springer Nature Limited

Navigation