Skip to main content

Advertisement

Log in

Rubber state of ionic fluorozirconate glasse

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Long-chain, and network polymers are elastic over a range of temperature, known as the rubbery or plateau region1. On cooling they become rigid, or glassy, with a shear modulus of ∼10 GPa and, on heating, if crystallization or decomposition does not intervene non-network polymers become fluid with a shear modulus approaching zero. In the rubbery zone, the real component of their shear modulus, G', remains nearly constant and the mechanical loss factor, tan ψ, reaches a minimum value1. The occurrence of the rubbery state is exclusively a property of polymers in which topological constraints, resulting from chain entanglements, or junction points forming the network, exist2. These obviously involve flexible covalent bonds at junction points and intermolecuiar or interchain forces at entanglements. Here, we report the first observation of rubber-like behaviour in an ionic fluorozirconate glass3, currently of great interest for use as optical waveguides and infrared windows, and examine its implications for concepts of polymer rheology. These results are significant for they suggest that ionic bonds in non-polymers can provide the same configurational restrictions as covalent bonds in a macromolecule or a polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferry, J. D. Viscoelastic Properties of Polymers 3rd edn, (Wiley, New York, 1980).

    Google Scholar 

  2. Treloar, L. R. G. The Physics of Rubber-like Elasticity, 3rd edn (Clarendon, Oxford, 1975).

    Google Scholar 

  3. Poulain, M. Nature 293, 279–280 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Cavaille, J. Y. & Etienne, S. Mém. scient. Revue Métall. 383–418 (1984).

  5. Etienne, S., Cavaille, J. Y., Perez, J., Point, R. & Salvia, M. Rev. scient. Intrum. 53, 1261–1264 (1982).

    Article  ADS  CAS  Google Scholar 

  6. McCrum, N. G., Read, B. & Williams, G. Anelastic and Dielectric Effects in Polymeric Solids (Academic, New York, 1967).

    Google Scholar 

  7. Almeida, R. M. & MacKenzie, J. D. J. chem. Phys. 74, 5954–5961 (1981); J. Non-Cryst Solids 51, 187–199 (1982).

    CAS  Google Scholar 

  8. Lucas, J., Angell, C. A. & Tamaddon, S. Bull mater. Res. 19, 945–951 (1981).

    Article  Google Scholar 

  9. Coupé, R. R., Louëer, D., Lucas, J. & Leonard, A. J. J. Am. Ceram. Soc. 66, 523–529 (1983).

    Article  Google Scholar 

  10. Kawamoto, Y. & Horisaka, T. J. Non-Cryst. Solids 56, 39–44 (1983).

    Article  ADS  CAS  Google Scholar 

  11. deGennes, P. G. J. chem. Phys. 55, 572–579 (1971); Physics Today 36, 33–39 (1983).

    Article  ADS  Google Scholar 

  12. Doi, M. & Edwards, S. F. JCS Faraday Trans. II 74, 1789–1801, 1802–1817, 1818–1832 (1978); 75, 38–54 (1979).

    Article  Google Scholar 

  13. Graessley, W. W. Adv. Polym. Sci. 47, 67–117 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbes, K., Mai, C., Etienne, S. et al. Rubber state of ionic fluorozirconate glasse. Nature 326, 479–480 (1987). https://doi.org/10.1038/326479a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326479a0

  • Springer Nature Limited

This article is cited by

Navigation