Skip to main content
Log in

Marginal gravitational lenses of large separation: probing superclusters

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The surface mass density (Σ) of clusters of galaxies and super-clusters is normally too low to split images1–5, even for a large source redshift (zs) and an optimal lens redshift (zi). Because the distribution function of Σ decreases steeply with Σ, a cluster or supercluster found responsible for multiple imaging has a high probability of being a marginal lens5. Such a lens, barely able to split images of a distant source, has a subcritical surface mass density and remarkable properties unlike those of lenses with a density above critical. As I show here, these properties can easily be recognized observationally when the image separation is larger than is normal for a lens made of a galaxy: (1) there may be no prominent excess of galaxies and no microwave background inhomogeneities in the immediate area of the images, (2) there may be an enhancement of the number of observable quasars at very different redshifts in an area much larger than the image separation, (3) there may be split images in the vicinity of unsplit images of other sources of even larger redshifts. If split images of the same source separated by many arc seconds are observed and the responsible lens is a non-exotic object, for example, a cluster, a group of clusters or a collapsing protocluster seen edgewise, it is likely to be marginal. Modern techniques permit a specific search for these lenses, which could constrain theories of structure fermation in the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanders, R. H., van Albada, T. S. & Oosterloo, T. O. Astrophys. J. 278, L91–L94 (1984).

    Article  ADS  Google Scholar 

  2. Narayan, R., Blandford, R. & Nitiyananda, R. Nature 310, 112–115 (1984).

    Article  ADS  Google Scholar 

  3. Turner, E. L., Ostriker, J. R. & Gott, J. R. Astrophys. J. 284, 1–22 (1984).

    Article  ADS  Google Scholar 

  4. Subramanian, K. & Cowling, S. A. Mon. Not. R. astr. Soc. 219, 333–346 (1986).

    Article  ADS  Google Scholar 

  5. Kovner, I. Astrophys. J. (in the press).

  6. Sarazin, C. L. Rev. mod. Phys. 58, 1–115 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Ostriker, J. P. & Vishniac, E. T. Nature 322, 804 (1986).

    Article  ADS  Google Scholar 

  8. Oort, J. H. A. Rev. Astr. Astrophys. 21, 373–428 (1983).

    Article  ADS  Google Scholar 

  9. Efstathiou, G. & Silk, J. Fundam. Cosmic Phys. 9, 1–138 (1983).

    ADS  CAS  Google Scholar 

  10. Jaroszyński, M. & Paczyński, B. in Proc. Second Eur. Reg. Mg (IAU) (Memorie Soc. astr. ital. 45) 673–480 (1974).

    Google Scholar 

  11. Schneider, P. Astr. Astrophys. 143, 413–420 (1984).

    ADS  Google Scholar 

  12. Blandford, R. & Narayan, R. Astrophys. J. 310, 568–582 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Kovner, I. Astrophys. J. (in the press).

  14. Kovner, I. Astrophys. J. (in the press).

  15. Struble, M. F. & Rood, H. J. Astr. J. 87, 7–46 (1982).

    Article  ADS  Google Scholar 

  16. de Lapparent, V., Geller, M. J. & Huchra, J. P. Astrophys. J. 302, L1–L5 (1986).

    Article  ADS  Google Scholar 

  17. Tago, E., Einasto, J. & Saar, E. Mon. Not. R. astr. Soc. 218, 177–184 (1986).

    Article  ADS  Google Scholar 

  18. Arnold, V. I., Shandarin, S. F. & Zel'dovich, Ya. B. Geophys. Astrophys. Fluid Dyn. 20, 111–130 (1982).

    Article  ADS  Google Scholar 

  19. Vishniac, E. T., Ostriker, J. P. & Bertschinger, E. Astrophys. J. 291, 399–416 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Bourassa, R. R., Kantowski, R. & Norton, T. D. Astrophys. J. 185, 747–756 (1973).

    Article  ADS  Google Scholar 

  21. Kaiser, N. & Stebbins, A. Nature 310, 391–393 (1984).

    Article  ADS  Google Scholar 

  22. Stark, A. A., Dragovan, M., Wilson, R. W. & Gott, J. R. Nature 322, 805 (1986).

    Article  ADS  Google Scholar 

  23. Sanders, R. H. Nature 309, 35–37 (1984).

    Article  ADS  Google Scholar 

  24. Kapahi, V. K., Subramanyan, R. & Singal, A. K. Nature 313, 463–465 (1984).

    Article  ADS  Google Scholar 

  25. Windhorst, R. thesis, Univ. Leiden (1984).

  26. Turner, E. L. et al. Nature 321, 142–144 (1986).

    Article  ADS  Google Scholar 

  27. Shaver, P. A. & Cristiani, S. Nature 321, 585–586 (1986).

    Article  ADS  Google Scholar 

  28. Phinney, E. S. & Blandford, R. D. Nature 321, 570–571 (1986).

    Article  ADS  Google Scholar 

  29. Arp, H. & Hazard, C. Astrophys. J. 240, 726–736 (1980).

    Article  ADS  Google Scholar 

  30. Paczyński, B. Nature 321, 419–420 (1986).

    Article  ADS  Google Scholar 

  31. Gott, J. R. Nature 321, 420–421 (1986).

    Article  ADS  Google Scholar 

  32. Paczyński, B. Nature 319, 567–568 (1986).

    Article  ADS  Google Scholar 

  33. Tyson, J. A., Valdes, F., Jarvis, J. F. & Mills, A. P. Astrophys. J. 281, L59–L62 (1984).

    Article  ADS  Google Scholar 

  34. Dyer, C. C. & Roeder, R. C. Astrophys. J. 174, L115–L117 (1972).

    Article  ADS  Google Scholar 

  35. Huchra, J. P. Nature 323, 784–786 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovner, I. Marginal gravitational lenses of large separation: probing superclusters. Nature 325, 507–509 (1987). https://doi.org/10.1038/325507a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325507a0

  • Springer Nature Limited

Navigation