Skip to main content
Log in

A cyclic nucleotide-gated conductance in olfactory receptor cilia

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Olfactory transduction is thought to be initiated by the binding of odorants to specific receptor proteins in the cilia of olfactory receptor cells (reviewed in refs 1–3). The mechanism by which odorant binding could initiate membrane depolarization is unknown, but the recent discovery of an odorant-stimulated adenylate cyclase in purified olfactory cilia4,5 suggests that cyclic AMP may serve as an intracellular messenger for olfactory transduction. If so, then there might be a conductance in the ciliary plasma membrane which is controlled by cAMP. Here we report that excised patches of ciliary plasma membrane, obtained from dissociated receptor cells, contain a conductance which is gated directly by cAMP. This conductance resembles the cyclic GMP-gated conductance that mediates phototransduction in rod and cone outer segments6,7, but differs in that it is activated by both cAMP and cGMP. Our data provide a mechanistic basis by which an odorant-stimulated increase in cyclic nucleotide concentration could lead to an increase in membrane conductance and therefore, to membrane depolarization. These data suggest a remarkable similarity between the mechanisms of olfactory and visual transduction and indicate considerable conservation of sensory transduction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rhein, L. D. & Cagan, R. H. in Biochemistry of Taste and Olfaction (eds Cagan, R. H. & Kare, M. R.) 47–65 (Academic, New York, 1981).

    Book  Google Scholar 

  2. Getchell, T. V. Physiol. Rev. 66, 772–818 (1986).

    Article  CAS  Google Scholar 

  3. Lancet, D. A. Rev. Neurosci. 9, 329–355 (1986).

    Article  CAS  Google Scholar 

  4. Pace, U., Hanski, E., Salomon, Y. & Lancet, D. Nature 316, 255–258 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Sklar, P. B., Anholt, R. H. & Snyder, S. H. J. biol. Chem. 261, 15538–15543 (1986).

    CAS  PubMed  Google Scholar 

  6. Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Nature 313, 310–313 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Haynes, L. W. & Yau, K.-W. Nature 317, 61–64 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  9. Reese, T. S. J. Cell Biol. 25, 209–230 (1965).

    Article  CAS  Google Scholar 

  10. Corey, D. P. & Stevens, C. F. in Single Channel Recording (eds Sakmann, B. & Neher, E.) 53–68 (Plenum, New York, 1983).

    Book  Google Scholar 

  11. Sakmann, B. & Neher, E. in Single Channel Recording (eds Sakmann, B. & Neher, E.) 37–51 (Plenum, New York, 1983).

    Book  Google Scholar 

  12. Matthews, G. Soc. Neurosci. Abstr. 11, 1130 (1985).

    Google Scholar 

  13. Yau, K.-W. & Haynes, L. W. Biophys. J. 49, 33a (1986).

    Article  Google Scholar 

  14. Haynes, L. W., Kay, A. R. & Yau, K.-W. Nature 321, 66–70 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Zimmerman, A. L. & Baylor, D. A. Nature 321, 70–72 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Trotier, D. & MacLeod, P. Brain Res. 268, 225–237 (1983).

    Article  CAS  Google Scholar 

  17. Suzuki, N. in Food Intake and Chemical Senses (eds Katsuki, Y., Sato, M., Takagi, S. F. & Oomura, Y.) 13–22 (University of Tokyo Press, 1977).

    Google Scholar 

  18. Anderson, P. A. V. & Hamilton, K. A. Neuroscience (in the press).

  19. Getchell, T. V., Heck, G. L. & DeSimone, J. A. Biophys. J. 29, 397–412 (1980).

    Article  CAS  Google Scholar 

  20. Getchell, T. V. & Shepherd, G. M. J. Physiol., Lond. 282, 541–560 (1978).

    Article  CAS  Google Scholar 

  21. Masukawa, L. M., Hedlund, B. & Shepherd, G. M. J. Neurosci. 5, 136–141 (1985).

    Article  CAS  Google Scholar 

  22. Takagi, S. F. in Handbook, of Sensory Physiology Vol. 4 (ed. Beidler, L. M.) 75–94 (Springer, New York, 1971).

    Google Scholar 

  23. Rhein, L. D. & Cagan, R. H. Proc. natn. Acad. Sci. U.S.A. 77, 4412–4416 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Adamek, G. D., Gesteland, R. C., Mair, R. G. & Oakley, B. Brain Res. 310, 87–97 (1984).

    Article  CAS  Google Scholar 

  25. Huque, T. & Bruch, R. C. Biochem. biophys. Res. Commun. 137, 36–42 (1986).

    Article  CAS  Google Scholar 

  26. Sklar, P. B., Anholt, R. R. H. & Snyder, S. H. J. Neurosci. Abstr. 12, 1178 (1986).

    Google Scholar 

  27. Vodyanoy, V. & Murphy, R. B. Science 220, 717–719 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Fesenko, E. E., Novoselov, V. I., Pervukin, G. Y. & Fesenko, N. K. Biochim. biophys. Acta 466, 347–356 (1977).

    Article  CAS  Google Scholar 

  29. Vinnikov, J. A. Cold Spring Harb. Symp. quant. Biol. 30, 293–300 (1965).

    Article  CAS  Google Scholar 

  30. Jencks, W. P. in Chemical Recognition in Biology (eds Chapeville, F. & Haenni, A.-L.) 3–25 (Springer, New York, 1980).

    Book  Google Scholar 

  31. Graziadei, P. P. C. in Handbook of Sensory Physiology Vol. 4 (ed. Beidler, L. M.) 27–58 (Springer, New York, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, T., Gold, G. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325, 442–444 (1987). https://doi.org/10.1038/325442a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325442a0

  • Springer Nature Limited

This article is cited by

Navigation