Skip to main content
Log in

Inertial waves identified in the Earth's fluid outer core

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Several inertial waves have been identified in the long period gravimetric data of Melchior and Ducarme1. These hydrodynamical waves which only exist because of the Earth's rotation, must be in the Earth's fluid outer core. Close proximity of the observed periods to those predicted for a homogeneous fluid suggests the waves should be labelled inertial because buoyancy and compressibility effects must be small or self-cancelling. Some of the identified waves have azimuthal wavenumber one, consistent with their occurrence after large, deep earthquakes which probably excite the waves through a small perturbation in the Earth's rotation. Other waves are axially symmetric, consistent with a small change in the magnitude of the fluid core's rotation rate. All the waves decay more rapidly than would be expected for Ekman dissipation which suggests an additional dynamical damping associated with mantle-inner core coupling. The inertial waves identified here will serve as a precise tool for subsequent evaluation of models for core dynamics and the geodynamo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melchior, P. & Ducarme, B. Phys. Earth planet. Interiors 42, 129–134 (1986).

    Article  ADS  Google Scholar 

  2. Kelvin, Lord Phil. Mag. 10, 155–168 (1880).

    Article  Google Scholar 

  3. Bjerknes, V. & Solberg, H. Avh. norske Vidensk Akad. 7, 1–16 (1929).

    Google Scholar 

  4. Aldridge, K. D. Mathematika 19, 163–168 (1972).

    Article  Google Scholar 

  5. Aldridge, K. D. Geophys. J. R. astr. Soc. 42, 337–345 (1975).

    Article  ADS  Google Scholar 

  6. Aldridge, K. D. & Toomre, A. J. Fluid Mech. 37, 307–323 (1969).

    Article  ADS  Google Scholar 

  7. Beardsley, R. C. Stud. appl. Math. 49, 187–196 (1970).

    Article  Google Scholar 

  8. Fultz, D. J. Met. 16, 199–208 (1959).

    Article  Google Scholar 

  9. McEwan, A. D. J. Fluid Mech. 40, 603–640 (1970).

    Article  ADS  Google Scholar 

  10. Stergiopoulos, S. & Aldridge, K. D. Phys. Earth planet. Interiors 36, 17–26 (1984).

    Article  ADS  Google Scholar 

  11. Thompson, R. J. Fluid Mech. 40, 737–751 (1970).

    Article  ADS  Google Scholar 

  12. Stewartson, K. & Rickard, J. A. J. Fluid Mech. 35, 759–773 (1969).

    Article  ADS  Google Scholar 

  13. Crossley, D. J. Phys. Earth planet. Interiors 36, 1–16 (1984).

    Article  ADS  Google Scholar 

  14. Crossley, D. J. & Rochester, M. G. Geophys. J. R. astr. Soc. 60, 129–161 (1980).

    Article  ADS  Google Scholar 

  15. Crossley, D. J. & Smylie, D. E. Geophys. J. R. astr. Soc. 42, 1011–1033 (1975).

    Article  Google Scholar 

  16. Smylie, D. E., Szeto, A. M. K. & Rochester, M. G. Rep. Prog. Phys. 4, 855–906 (1984).

    Article  ADS  Google Scholar 

  17. Kudlick, M. D. thesis, M.I.T. (1966).

  18. Greenspan, H. P. The Theory of Rotating Fluids (Cambridge University Press, 1969).

    MATH  Google Scholar 

  19. Gans, R. F. J. geophys. Res. 77, 360–366 (1972).

    Article  ADS  CAS  Google Scholar 

  20. Szeto, A. M. K. & Smylie, D. E. Phil. Trans. R. Soc. A313, 171–184 (1984).

    Article  ADS  Google Scholar 

  21. Smylie, D. E. & Rochester, M. G. Geophys. J. R. astr. Soc. 86, 553–561 (1986).

    Article  ADS  Google Scholar 

  22. Friedlander, S. Geophys. J. R. astr. Soc. (submitted).

  23. Rochester, M. G. & Crossley, D. J. Geophys. Res. Lett. (submitted).

  24. Carter, W. E. & Robertson, D. S. Scient. Am. 255, 46–54 (1986).

    Article  Google Scholar 

  25. Olson, P. J. geophys. Res. 86, 10875–10882 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldridge, K., Lumb, L. Inertial waves identified in the Earth's fluid outer core. Nature 325, 421–423 (1987). https://doi.org/10.1038/325421a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325421a0

  • Springer Nature Limited

This article is cited by

Navigation