Skip to main content

Advertisement

Log in

Astrocytes induce blood–brain barrier properties in endothelial cells

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The highly impermeable tight junctions between endothelial cells forming the capillaries and venules in the central nervous system (CNS) of higher vertebrates are thought to be responsible for the blood-brain barrier1,2 that impedes the passive diffusion of solutes from the blood into the extracellular space of the CNS3–6. The ability of CNS endothelial cells to form a blood-brain barrier is not intrinsic to these cells but instead is induced by the CNS environment: Stewart and Wiley7 demonstrated that when avascular tissue from 3-day-old quail brain is transplanted into the coelomic cavity of chick embryos, the chick endothelial cells that vascularize the quail brain grafts form a competent blood–brain barrier; on the other hand, when avascular embryonic quail coelomic grafts are transplanted into embryonic chick brain, the chick endothelial cells that invade the mesenchymal tissue grafts form leaky capillaries and venules. It is, however, not known which cells in the CNS are responsible for inducing endothelial cells to form the tight junctions characteristic of the blood–brain barrier. Astrocytes are the most likely candidates since their processes form endfeet that collectively surround CNS microvessels8,9. In this report we provide direct evidence that astrocytes are capable of inducing blood–brain barrier properties in non-neural endothelial cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reese, T. S. & Karnovsky, M. J. J. Cell Biol. 34, 207–217 (1967).

    Article  CAS  Google Scholar 

  2. Nagy, Z., Peters, H. & Huettner, I. Lab. Invest. 50, 313–322 (1984).

    CAS  PubMed  Google Scholar 

  3. Crone, C. Acta physiol. Scand. 64, 407–417 (1965).

    Article  CAS  Google Scholar 

  4. Bradbury, M. W. B. Circulation Res. 57, 213–222 (1985).

    Article  CAS  Google Scholar 

  5. Abbott, N. J. Trends Neurosci. 9, 3–7 (1986).

    Article  Google Scholar 

  6. Betz, A. L. & Goldstein, G. W. A. Rev. Physiol. 48, 241–250 (1986).

    Article  CAS  Google Scholar 

  7. Stewart, P. A. & Wiley, M. J. Devl Biol. 84, 183–192 (1981).

    Article  CAS  Google Scholar 

  8. Ramon y Cajal, S. in Histologie du systeme nerveux de l'homme et des vertebres Vol. 1, 230–252, 2nd edn (CSDIC, Instituto Ramon y Cajal, Madrid, 1972).

    Google Scholar 

  9. Peters, A., Palay, S. L. & DeWebster, H. in The Fine structure of the nervous system: The neurons and supporting cells 231–263 (Saunders, Philadelphia, 1976).

    Google Scholar 

  10. Raff, M. C., Abney, E. R. & Fok-Seang, J. Cell 42, 61–69 (1985).

    Article  CAS  Google Scholar 

  11. Bignami, A., Eng, L. F., Dahl, D. & Uyeda, C. T. Brain Res. 43, 429–435 (1972).

    Article  CAS  Google Scholar 

  12. Raff, M. C., Abney, E. R., Cohen, J., Lindsay, K. & Noble, M. J. Neurosci. 3, 1289–1300 (1983).

    Article  CAS  Google Scholar 

  13. Olson, L., Seiger, A. & Stroemberg, I. in Advances in Cellular Neurobiology Vol. 4 (eds Federoff, S. & Hertz, L.) 407–422 (Academic New York, 1983).

    Google Scholar 

  14. Freedman, F. B. & Johnson, J. A. Am. J. Physiol. 216, 675–681 (1969).

    CAS  PubMed  Google Scholar 

  15. Raff, M. C. et al. Brain Res. 174, 283–308 (1979).

    Article  CAS  Google Scholar 

  16. Saria, A. & Lundberg, J. M. J. Neurosci. Meth. 8, 41–49 (1983).

    Article  CAS  Google Scholar 

  17. Hsu, S. M., Raine, L. & Fanger, H. J. Histochem. Cytochem. 29, 577–584 (1981).

    Article  CAS  Google Scholar 

  18. Tao-Cheng, J.-H., Nagy, Z. & Brightman, W. Anal. Rec. 214, 131A (1986).

    Google Scholar 

  19. DeBault, L. E. & Cancilla, P. A. Science 207, 653–655 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Beck, D. W., Vinters, H. V., Hart, M. N. & Cancilla, P. A. J. Neuropath. exp. Neurol. 43, 219–224 (1984).

    Article  CAS  Google Scholar 

  21. McCarthy, K. D. & de Vellis, J. J. Cell Biol. 85, 890–902 (1980).

    Article  CAS  Google Scholar 

  22. Noble, M., Fok-Sang, J. & Cohen, J. J. Neurosci. 4, 1892–1903 (1984).

    Article  CAS  Google Scholar 

  23. Raff, M. C., Abney, E. R. & Miller, R. H. Devl Biol. 106, 53–60 (1984).

    Article  CAS  Google Scholar 

  24. Pruss, R. M. Nature 280, 688–690 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Eisenbarth, G. S., Walsh, F. S. & Nirenberg, M. Proc. natn. Acad. Sci. U.S.A. 76, 4913–4917 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Ranscht, B., Clapshaw, P. A., Price, J., Noble, M. & Siefert, W. Proc. natn. Acad. Sci. U.S.A. 79, 2707–2713 (1982).

    Article  ADS  Google Scholar 

  27. Pino, R. M. & Thouron, C. L. J. Histochem. Cytochem. 31, 411–416 (1983).

    Article  CAS  Google Scholar 

  28. Sternberger, L. A. Immunocytochemistry, 3rd edn, (Wiley, New York, 1986).

    Google Scholar 

  29. New, D. A. T. The Culture of Vertebrate Embryos 71–73 (Academic, London, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janzer, R., Raff, M. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325, 253–257 (1987). https://doi.org/10.1038/325253a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325253a0

  • Springer Nature Limited

This article is cited by

Navigation