Skip to main content
Log in

Photofootprinting in vivo detects transcription-dependent changes in yeast TATA boxes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

To elucidate critical steps in the transcription initiation process, we have devised a protocol for obtaining information about DNA structure and DNA–protein interactions at nucleotide level resolution from intact yeast cells. Our procedure combines the ultraviolet light 'footprinting' method developed by Becker and Wang1 with the 'genomic sequencing' technique described by Church and Gilbert2. Using this approach we were able to detect the binding of GAL 4 protein at sites within the upstream activating sequence (UASG) previously mapped using other in vivo and in vitro foot-printing procedures3–5. We also observed transcription-dependent changes in sensitivity of DNA to ultraviolet-induced covalent modification at several positions between the upstream activating sequence and the transcription initiation sites of the GAL 1 and GAL 10 genes. The most prominent of these changes occurs at a common site within the putative 'TATA' boxes of the two genes. Ultraviolet modification at this site is enhanced only in transcrip-tionally active promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, M. M. & Wang, J. C. Nature 309, 682–687 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Church, G. M. & Gilbert, W. Proc. nat. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Giniger, E., Varnum, S. M. & Ptashne, M. Cell 40, 767–774 (1985).

    Article  CAS  Google Scholar 

  4. Bram, R. J. & Kornberg, R. D. Proc. nat. Acad. Sci. U.S.A. 82, 43–47 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Keegan, L., Gill, G. & Ptashne, M. Science 231, 699–704 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Douglas, H. C. & Hawthorne, D. Genetics 49, 837–844 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Oshima, Y. The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 159–180 (Cold Spring Harbor Press, New York, 1982).

    Google Scholar 

  8. Douglas, H. C. & Pelroy, G. Biochim. biophys. Acta 68, 155–156 (1963).

    Article  CAS  Google Scholar 

  9. Johnston, M. & Dover, J. Proc. natn. Acad. Sci. U.S.A. (in the press).

  10. Struhl, K. Proc. natn. Acad. Sci. U.S.A. 79, 7385–7389 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Guarente, L., Yocum, R. R. & Gifford, P. Proc. natn. Acad. Sci. U.S.A. 79, 7410–7414 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Guarente, L. & Mason, T. Cell 32, 1279–1286 (1983).

    Article  CAS  Google Scholar 

  13. Nagawa, F. & Fink, G. R. Proc. natn. Acad. Sci. U.S.A. 82, 8557–8561 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Hahn, S., Hoar, E. T. & Guarente, L. Proc. natn. Acad. Sci. U.S.A. 82, 8562–8566 (1985).

    Article  ADS  CAS  Google Scholar 

  15. McNeil, J. B. & Smith, M. J. molec. Biol. 187, 363–378 (1986).

    Article  CAS  Google Scholar 

  16. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Johnston, M. & Davis, R. W. Molec. cell Biol. 4, 1440–1448 (1984).

    Article  CAS  Google Scholar 

  18. Carlson, M. & Botstein, D. Cell 28, 145–154 (1982).

    Article  CAS  Google Scholar 

  19. Sarokin, L. & Carlson, M. Molec. cell. Biol. 4, 2750–2757 (1984).

    Article  CAS  Google Scholar 

  20. West, R. W., Yocum, R. R. & Ptashne, M. Molec. cell. Biol. 4, 2467–2478 (1984).

    Article  CAS  Google Scholar 

  21. Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

  22. Parker, C. S. & Topol, J. Cell 36, 357–369 (1984).

    Article  CAS  Google Scholar 

  23. Sawadogo, M. & Roeder, R. G. Cell 43, 165–175 (1985).

    Article  CAS  Google Scholar 

  24. Coen, D. M., Weinheimer, S. P. & Mcknight, S. L. Science 234, 53–59 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Ptashne, M. Nature 322, 697–701 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Yocum, R. R. & Johnston, M. Gene 32, 75–82 (1984).

    Article  CAS  Google Scholar 

  27. Scott, J. H. & Schekman, R. J. Bact. 142, 414–423 (1980).

    CAS  PubMed  Google Scholar 

  28. Tabor, S. & Richardson, C. C. Proc. natn. Acad. Sci. U.S.A. 82, 1074–1078 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selleck, S., Majors, J. Photofootprinting in vivo detects transcription-dependent changes in yeast TATA boxes. Nature 325, 173–177 (1987). https://doi.org/10.1038/325173a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325173a0

  • Springer Nature Limited

This article is cited by

Navigation