Skip to main content
Log in

Archaean flow-top alteration zones formed initially in a low-temperature sulphate-rich environment

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The 3,500–3,400 Myr Onverwacht Group in the southern part of the Barberton Greenstone Belt, South Africa, includes up to 12 km of komatiitic and tholeiitic lavas containing minor sedimentary and felsic volcanic units1. Komatiitic lavas showing spinifex textures, chrome spinels and high Ni and Cr contents are common throughout the sequence2. The rocks have been subject to polyphase Archaean deformation and low-grade metasomatism2–4. At several positions within the Onverwacht Group (Fig. 1), the tops of komatiitic lavas underlying chert beds are marked regionally by 1–50-m thick zones of silicification, carbonatization and K2O enrichment (Fig. 2). Because these zones have been variously interpreted to represent the felsic tops of mafic-to-felsic volcanic cycles, weathering horizons and shear zones, their origin is germane to any interpretation of the stratigraphy, structure and evolution of the Barberton belt. Here we present evidence that they formed inlarge part by low-temperature, near-surface alteration of komatiitic lavas during intervals of volcanic quiescence. They do not mark fault zones and cannot be used to subdivide the greenstone belt sequence into a series of fault-bounded structural slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viljoen, M. J. & Vilgoen, R. P. Spec. Publs geol Soc. S. Afr. 2, 113–152 (1969).

    CAS  Google Scholar 

  2. Lowe, D. R., Byerly, G. R., Ransom, B. L. & Nocita, B. W. Precambr. Res. 27, 165–186 (1985).

    Article  ADS  Google Scholar 

  3. deWit, M. L. J. struct. Geol 4, 117–136 (1982).

    Article  ADS  Google Scholar 

  4. deWit, M. J., Hart, R., Martin, A. & Abbott, P. Econ. Geol. 77, 1783–1801 (1982).

    Article  CAS  Google Scholar 

  5. Pearton, T. N. in Komatiites (eds Arndt, N. E. & Nisbet, E. G.) 459–476 (Allen & Unwin, London, 1982).

  6. Hanor, J. S. & Duchac, K. C. Absts Prog. geol Soc. Am. 17, 603.

  7. Ramsay, J. G. & Huber, M. I., The Techniques of Modern Structural Geology Vol. 1 : Strain Analysis, 235–263 (Academic, London, 1983).

    Google Scholar 

  8. deWit, M. J. in Abstr. Workshop tecton. Evol. Greenstone Belts 25, (Lunar & Planetary Institute, Houston, 16–18 Jan. 1986).

    ADS  Google Scholar 

  9. Folk, R. L. & Pittman, J. S. J. sedim. Petrol. 41, 1045–1058 (1971).

    Google Scholar 

  10. Chowns, T. M. & Elkins, J. E. J. sedim. Petrol. 44, 885–903 (1974).

    CAS  Google Scholar 

  11. Tucker, M. E. Sedim. Geol. 16, 193–204 (1976).

    Article  ADS  Google Scholar 

  12. Machel, H. Sedimentology 32, 443–454 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Lowe, D. R. & Knauth, L. P. J. Geol. 85, 699–723 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Lanier, W. P. & Lowe, D. R. Precambr. Res. 18, 237–260 (1982).

    Article  ADS  Google Scholar 

  15. Byerly, G. R., Lowe, D. R. & Walsh, M. M. Nature 319, 489–491 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Anhaeusser, C. R. Phil. Trans. R. Soc. A273, 359–388 (1973).

    Article  ADS  Google Scholar 

  17. Paris, I., Stanistreet, I. G. & Hughes, M. J. J. Geol. 93, 111–129 (1985).

    Article  ADS  Google Scholar 

  18. Hardie, L. A. Am. Miner. 52, 171–200 (1967).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowe, D., Byerly, G. Archaean flow-top alteration zones formed initially in a low-temperature sulphate-rich environment. Nature 324, 245–248 (1986). https://doi.org/10.1038/324245a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324245a0

  • Springer Nature Limited

This article is cited by

Navigation