Skip to main content
Log in

Convergent and divergent evolution of regulatory sites in eukaryotic phosphorylases

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The activity of many proteins in eukaryotic cells is regulated by reversible covalent phosphorylation1. This regulatory modification is often linked to other allosteric controls within the same protein2, and such overlapping regulatory mechanisms are best characterized for glycogen phosphorylase (EC 2.4.1.1). Phosphorylases from different organisms or cell types exhibit markedly contrasting regulatory features3; this makes the enzyme attractive for studying the evolution of interacting molecular regulatory mechanisms4,5. Extensive biochemical and crystallographic studies of rabbit muscle phosphorylase have led to a characterization of five regulatory regions (phosphorylation, glycogen storage, AMP, glucose and purine sites)6–8. Here we report the complete primary structure of the yeast Saccharomyces cerevisiae glycogen phosphorylase, deduced from the sequence of the cloned gene. Regions that are highly conserved between muscle and yeast enzymes include the active site, the glycogen storage site and possibly the glucose and purine inhibition sites. Partial conservation of the residues involved in AMP-binding suggests a binding site for the yeast enzyme inhibitor, glucose 6-phosphate9,10. Other parts of the AMP site and the intersubunit contacts involved in AMP allostery are disrupted in the yeast enzyme by extreme sequence divergence. The poor alignment of amino termini and lack of homology at phosphorylation sites indicate that regulation by reversible phosphorylation evolved independently in yeast and vertebrate phosphorylases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, P. Eur. J. Biochem. 151, 439–448 (1985).

    Article  CAS  Google Scholar 

  2. Cohen, P. Control of Enzyme Activity 2nd edn, 1–96 (Chapman & Hall, London, 1983).

    Book  Google Scholar 

  3. Graves, D .J. & Wang, T. H. in The Enzymes vol. 7, 3rd edn (ed. Boyer, P.), 430–482 (Academic, London, 1982).

    Google Scholar 

  4. Fischer, E. H., Pocker, A. & Saari, J. C. Essays Biochem. 6, 23–68 (1970).

    CAS  PubMed  Google Scholar 

  5. Palm, D., Goerl, R. & Burger, K. J. Nature 313, 500–502 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Fletterick, R. J., & Sprang, S. R. Acc. chem. Res., 15, 361–369 (1983).

    Article  Google Scholar 

  7. Fletterick, R. J., & Madsen, N. B. A. Rev. Biochem., 49, 831–861 (1980).

    Article  Google Scholar 

  8. Dombradi, V., Int. J. Biochem. 13, 125–139. 1981).

    Article  CAS  Google Scholar 

  9. Fosset, M., Muir, L. W., Nielsen, L. D. & Fischer, E. H. Biochemistry 10, 4105–4113 (1971).

    Article  CAS  Google Scholar 

  10. Sagardia, F., Gotay, I. & Rodriquez, M. Biochem. biophys. Res. Comm. 42, 829–935 (1971).

    Article  CAS  Google Scholar 

  11. Kasvinsky, P. J., Schechosky, S. & Fletterick, R. J. J. biol. Chem., 253, 9102–9106 (1978).

    CAS  PubMed  Google Scholar 

  12. Guenard, D., Morange, M. & Buc, H. Eur. J. Biochem. 76, 447–452 (1977).

    Article  CAS  Google Scholar 

  13. Stura, E. A. et al. J. molec. Biol. 170, 529–565 (1983).

    Article  CAS  Google Scholar 

  14. Sprang, S. et al. Biochemistry 21, 2036–2048 (1982).

    Article  CAS  Google Scholar 

  15. Sprang, S. R. & Fletterick, R. J. J. molec. Biol. 131, 523–551 (1979).

    Article  CAS  Google Scholar 

  16. Lorek, A. et al. Biochem. J. 218, 45–60 1984).

    Article  CAS  Google Scholar 

  17. Titani, K. et al. Proc. natn. Acad. Sci. U.S.A. 74, 4762–4766 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Lerch, K., & Fischer, E. H. Biochemistry 14, 2009–2014 (1975).

    Article  CAS  Google Scholar 

  19. Becker, J.-U. Wingender-Drissen, R. & Schiltz, E. Archs Biochem. Biophys. 225, 667–678 (1983).

    Article  CAS  Google Scholar 

  20. Pohlig, G. Wingender-Drissen, R. & Becker, J.-U. Biochem. biophys. Res. Commun. 114, 331–338 (1983).

    Article  CAS  Google Scholar 

  21. Cohen, P., Saari, J. C. & Fischer, E. H. Biochemistry 12, 5233–5241 (1973).

    Article  CAS  Google Scholar 

  22. Schiltz, E., Palm, D. & Klein, H. W. FEBS Lett. 109, 59–62. (1980).

    Article  CAS  Google Scholar 

  23. Lacks, S. A., Dunn, J. J. & Greenberg, B. Cell 31, 327–336 (1982).

    Article  CAS  Google Scholar 

  24. Nakano, K., Fukui, T., & Matsubara, H. J. biol. Chem. 255, 9255–9261 (1980).

    CAS  PubMed  Google Scholar 

  25. Newgard, C. B., Nakano, K., Hwang, P. K. & Fletterick, R. J. Proc. natn. Acad. Sci. U.S.A. (in the press).

  26. Sprang, S., & Fletterick, R. J. Biophys. J. 32, 175–192 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Madsen, N. B. & Scheckosky, S. J. biol. Chem., 242, 3301–3307 (1967).

    CAS  PubMed  Google Scholar 

  28. Wingender-Drissen, R. & Becker, J.-U. Biochim. biophys. Acta 743, 343–350 (1983).

    Article  CAS  Google Scholar 

  29. Matsumoto, K., Uno, I., Kato, K. & Ishikawa, T. Yeast 1, 25–38 1985).

    Article  CAS  Google Scholar 

  30. Carlson, M., & Botstein, D. Cell 28, 145–154, (1982).

    Article  CAS  Google Scholar 

  31. Southern, E. J. molec. Biol. 98, 503–517, 1975).

    Article  CAS  Google Scholar 

  32. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 143, 161–178, (1980).

    Article  CAS  Google Scholar 

  33. Nakano, K., Hwang, P. K. & Fletterick, R. J. FEBS Lett. (in the press).

  34. Dayhoff, M. O. (ed.) in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 2, 3–8, (Natn. Biomed. Res. Fdn, Silver Spring, Maryland, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, P., Fletterick, R. Convergent and divergent evolution of regulatory sites in eukaryotic phosphorylases. Nature 324, 80–84 (1986). https://doi.org/10.1038/324080a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324080a0

  • Springer Nature Limited

This article is cited by

Navigation