Skip to main content
Log in

The essential light chains constitute part of the active site of smooth muscle myosin

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 22 January 1987

Abstract

Myosin, a major contractile protein, characteristically possesses a long coiled-coil α-helical tail and two heads. Each head contains both an actin binding site and an ATPase site and is formed from the NH2-terminal half of one of the two heavy chains (relative molecular mass, Mr, 200,000) and a pair of light chains; the so-called regulatory and essential light chains of approximately Mr 20,000 each. Recently we have identified1 Trp 130 of the myosin heavy chain from rabbit skeletal muscle as an active-site amino-acid residue after labelling with a new photoaffinity analogue of ADP, N-(4-azido-2-nitrophenyl)-2-aminoethyl diphosphate (NANDP)2. Nonspecific labelling was eliminated by first trapping NANDP at the active site with thiol crosslinking agents3. Exclusive labelling of the heavy chains with no labelling of the light chains agreed with previous findings4,5 that the heavy chains alone contain the actin-activated Mg-ATPase activity of rabbit skeletal myosin. Here we report similar photolabelling experiments with smooth muscle myosin (chicken gizzard) in which 3H-NANDP is trapped at the active site with vanadate6 and which show that both the heavy chains and the essential light chains are labelled. The results indicate that both chains contribute to the ATP binding site and represent the first direct evidence for participation of the essential light chains in the active site of any type of myosin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okamoto, Y. & Yount, R. G. Proc. natn. Acad. Sci. U.S.A. 82, 1575–1579 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Nakamaye, K., Wells, J. A., Bridenbaugh, R., Okamoto, Y. & Yount, R. G. Biochemistry 24, 5226–5235 (1985).

    Article  CAS  Google Scholar 

  3. Wells, J. A. & Yount, R. G. Proc. natn. Acad. Sci. U.S.A. 76, 4966–4970 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Wagner, P. D. & Giniger, E. Nature 292, 560–562 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Sivaramakrishnan, M. & Burke, M. J. biol. Chem. 257, 1102–1105 (1982).

    CAS  PubMed  Google Scholar 

  6. Goodno, C. Proc. natn. Acad. Sci. U.S.A. 76, 2620–2624 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Wells, J. A. & Yount, R. G. Meth. Enzym. 85, 95–116 (1982).

    Google Scholar 

  8. Mahmood, R. & Yount, R. G. J. biol. Chem. 259, 12956–12959 (1984).

    CAS  PubMed  Google Scholar 

  9. Szilagyi, K., Balint, M., Sreter, F. A. & Gergely, J. Biochem. biophys. Res. Commun. 87, 936–945 (1979).

    Article  CAS  Google Scholar 

  10. Adelstein, R. S. & Eisenberg, E. A. Rev. Biochem. 49, 921–956 (1980).

    Article  CAS  Google Scholar 

  11. Marston, S. Prog. Biophys. molec. Biol. 41, 1–41 (1982).

    Article  Google Scholar 

  12. Onishi, H. & Wakabayashi, T. J. Biochem. (Tokyo) 92, 871–879 (1982).

    Article  CAS  Google Scholar 

  13. Trybus, K. M., Huiatt, T. W. & Lowey, S. Proc. natn. Acad. Sci. U.S.A. 79, 6151–6155 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Craig, R., Smith, R. & Kendrick-Jones, J. Nature 302, 436–439 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Suzuki, H., Onishi, H., Takahashi, K. & Watanabe, S. J. Biochem.(Tokyo) 84, 1529–1542 (1978).

    Article  CAS  Google Scholar 

  16. Ikebe, M., Hinkins, S. & Hartshorne, D. J. Biochemistry 22, 4580–4587 (1983).

    Article  CAS  Google Scholar 

  17. Trybus, K. M. & Lowey, S. J. biol. Chem. 259, 8564–8571 (1984).

    CAS  PubMed  Google Scholar 

  18. Okamoto, Y. & Sekine, T. J. Biochem. (Tokyo) 87, 167–178 (1980).

    Article  CAS  Google Scholar 

  19. Goodno, C. C. & Taylor, E. W. Proc. natn. Acad. Sci. U.S.A. 79, 21–25 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Kato, Y., Komiya, K., Sasaki, H. & Hashimoto, T. J. Chromatogr. 193, 29–36 (1980).

    Article  CAS  Google Scholar 

  21. Poljak, R. J. Nature 256, 373–376 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Singer, S. J. & Doolittle, R. F. Science 153, 13–25 (1968).

    Article  ADS  Google Scholar 

  23. Good, A. H., Ovary, E. & Singer, S.J. Biochemistry 7, 1304–1310 (1968).

    Article  CAS  Google Scholar 

  24. Cassidy, P., Hoar, P. E. & Kerrick, W. G. L. J. biol. Chem. 254, 11148–11153 (1979).

    CAS  PubMed  Google Scholar 

  25. Matsuda, G. Adv. Biophys. 16, 185–218 (1983).

    Article  CAS  Google Scholar 

  26. Adelstein, R. S. & Conti, M. A. Nature 256, 597–598 (1975).

    Article  ADS  CAS  Google Scholar 

  27. Scordilis, S. P. & Adelstein, R. S. Nature 268, 558–560 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Trotter, J. A. & Adelstein, R. S. J. biol. Chem. 254, 8781–8785 (1979).

    CAS  PubMed  Google Scholar 

  29. Szent-Gyorgyi, A. G., Szentkiralyi, E. M. & Kendrick-Jones, J. J. molec. Biol. 74, 179–203 (1973).

    Article  CAS  Google Scholar 

  30. Ebashi, S. J. Biochem. 79, 229–231 (1976).

    Article  CAS  Google Scholar 

  31. Goodno, C. Meth. Enzym. 85, 116–123 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, Y., Sekine, T., Grammer, J. et al. The essential light chains constitute part of the active site of smooth muscle myosin. Nature 324, 78–80 (1986). https://doi.org/10.1038/324078a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324078a0

  • Springer Nature Limited

This article is cited by

Navigation