Skip to main content
Log in

Double clusters and gravitational lenses

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Clusters of galaxies can act as gravitational lenses1 which produce double quasars with splittings as large as 1–2 arc min. The potential well of the cluster must be deep enough on the scale of the image to focus the light, which means that the velocity dispersion within the cluster must be high and the core radius small. These requirements are reduced if there are two (or more) clusters along the line of sight. Paczynski and Gorski2 have modelled the triple image produced by two clusters without pursuing the probability of such an alignment in any detail. Here we predict the number of double quasar images in the sky that are produced by double clusters. The clustering of clusters3 and the occurrence of binary clusters4,5 enhances the probability of double clusters well above that expected from a purely random spatial distribution. Several double images are expected. Double clusters should be considered for apparent double quasar images such as Hazard 1146+111 B,C (refs 6,7) before cosmic strings8 or supermassive black holes9 are required. Although H1146+111B and C may not be due to a gravitational lens10,11, the discovery of a bona fide wide double quasar image will be important in the study of the evolution of the clustering of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naranan, R., Blandford, R. & Nityananda, R. Nature 310, 112–115 (1984).

    Article  ADS  Google Scholar 

  2. Paczynski, B. & Gorski, K. Astrophys. J. 248, L101–L104 (1984).

    Article  ADS  Google Scholar 

  3. Bahcall, N. A. & Soniera, R. M. Astrophys. J. 270, 20–38 (1983).

    Article  ADS  Google Scholar 

  4. Ulmer, M. P. & Cruddace, R. G. Astrophys. J. Lett. 246, L99–L103 (1981).

    Article  ADS  Google Scholar 

  5. Forman, W. et al. Astrophys. J. 243, L133–136 (1981).

    Article  ADS  Google Scholar 

  6. Hazard, C., Arp, H. & Morton, D. C. Nature 282, 271 (1979).

    Article  ADS  Google Scholar 

  7. Turner, E. et al. Nature 321, 142–144 (1986).

    Article  ADS  Google Scholar 

  8. Gott, J. R. Nature 321, 420–421 (1986).

    Article  ADS  Google Scholar 

  9. Paczynski, B. Nature 321, 419–420 (1986).

    Article  ADS  Google Scholar 

  10. Nature 321, 377 (1986).

  11. Shaver, P. A. & Christiani, S. Nature 321, 585–586 (1986).

    Article  ADS  Google Scholar 

  12. Bahcall, N. A. Astrophys. J. 232, 689–698 (1979).

    Article  ADS  Google Scholar 

  13. Bahcall, N. A. Astrophys. J. 247, 787–791 (1985).

    Article  ADS  Google Scholar 

  14. Rivolo, A. R. Nature 317, 788–789 (1985).

    Article  ADS  Google Scholar 

  15. Piccinotti, G. et al. Astrophys. J. 253, 485–503 (1982).

    Article  ADS  Google Scholar 

  16. Quintana, H. & Melnick, J. Astrophys. J. 87, 972–978 (1982).

    ADS  Google Scholar 

  17. Jones, C. & Forman, W. Astrophys. J. 276, 38–55 (1984).

    Article  ADS  Google Scholar 

  18. McGlynn, T. A. & Fabian, A. C. Mon. Not. R. astr. Soc. 208, 709–718 (1984).

    Article  ADS  Google Scholar 

  19. Sunyaev, R. A. & Zel'dovich, Ya. B. Commts Astr. Space Sci. 4, 173–179 (1972).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, C., Fabian, A. & Rees, M. Double clusters and gravitational lenses. Nature 323, 514–515 (1986). https://doi.org/10.1038/323514a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323514a0

  • Springer Nature Limited

Navigation