Skip to main content
Log in

A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Many biological processes are coupled to ATP hydrolysis. We describe here a class of closely related ATP-binding proteins, from several bacterial species, which are associated with a variety of cellular functions including membrane transport, cell division, nodulation in Rhizobium and haemolysin export. These proteins comprise a family of structurally and functionally related subunits which share a common evolutionary origin, bind ATP and probably serve to couple ATP hydrolysis to each of these biological processes. This finding suggests a specific role for ATP in cell division, nodulation during nitrogen fixation and protein export, and allows us to assign a probable function to one of the protein components from each of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Higgins, C. F., Hiles, I. D., Whalley, K. & Jamieson, D. J. EMBO J. 4, 1033–1040 (1985).

    Article  CAS  Google Scholar 

  2. Ames, G. F-L. A. Rev. Biochem. 55, 397–425 (1986).

    Article  CAS  Google Scholar 

  3. Ames, G. F-L. & Higgins, C. F. Trends biol. Sci. 8, 97–100 (1983).

    Article  CAS  Google Scholar 

  4. Berger, E. A. Proc. natn. Acad. Sci. U.S.A. 70, 1514–1518 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Berger, E. A. & Heppel, L. A. J. biol. Chem. 249, 7747–7755 (1974).

    CAS  PubMed  Google Scholar 

  6. Hobson, A., Weatherwax, R. & Ames, G. F-L Proc. natn. Acad. Sci. U.S.A. 81, 7333–7337 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. EMBO J. 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  8. Pai, E. F. et al. J. molec. Biol. 114, 37–45 (1977).

    Article  CAS  Google Scholar 

  9. Fry, D. C., Kuby, S. A. & Mildvan, A. S. Proc. natn. Acad. Sci. U.S.A. 83, 907–911 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Sancar, A., Stachelek, C. W., Konigsberg, W. D. & Rupp, W. D. Proc. natn. Acad. Sci. U.S.A. 77, 2611–2615 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Finch, P. W. & Emmerson, P. T. Nucleic Acids Res. 12, 5789–5799 (1984).

    Article  CAS  Google Scholar 

  12. Moller, W. & Amons, R. FEBS Lett. 186, 1–7 (1985).

    Article  CAS  Google Scholar 

  13. Hiles, I. D. & Higgins, C. F. J. molec. Biol.(submitted).

  14. Higgins, C. F. et al. Nature 298, 723–727 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Felmlee, T., Pellett, S. & Welch, R. A. J. Bact. 163, 94–105 (1985).

    CAS  PubMed  Google Scholar 

  16. Mackman, N., Nicaud, J-M., Gray, L. & Holland, I. B. Molec. gen. Genet. 201, 282–288 (1985).

    Article  CAS  Google Scholar 

  17. Wagner, W., Vogel, M. & Goebel, W. J. Bact. 154, 200–210 (1983).

    CAS  PubMed  Google Scholar 

  18. Mackman, N., Nicaud, J-M., Gray, L. & Holland, I. B. Curr. Topics Microbiol. Immun. (in the press).

  19. Mackman, N., Nicaud, J-M., Gray, L. & Holland, I. B. Molec. gen. Genet. 201, 529–536 (1985).

    Article  CAS  Google Scholar 

  20. Ames, G. F-L. & Nikaido, K. Proc. natn. Acad. Sci. U.S.A. 75, 5447–5451 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Bavoil, P., Hofnung, M. & Nikaido, H. J. biol. Chem. 255, 8366–8369 (1980).

    CAS  Google Scholar 

  22. Shuman, H. A. & Silhavy, T. J. J. biol. Chem. 256, 560–562 (1981).

    CAS  Google Scholar 

  23. Surin, B. P., Rosenberg, H. & Cox, G. B. J. Bact. 161, 189–198 (1985).

    CAS  PubMed  Google Scholar 

  24. Hartlein, M. et al. J. Cell Biochem. 22, 87–97 (1983).

    Article  CAS  Google Scholar 

  25. Gilson, E., Higgins, C. F., Hofnung, M., Ames, G. F-L. & Nikaido, H. J. biol. Chem. 257, 9915–9918 (1982).

    CAS  PubMed  Google Scholar 

  26. Pflugrath, J. W. & Quiocho, F. A. Nature 314, 257–260 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Quiocho, F. A. & Vyas, N. K. Nature 310, 381–386 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Gilson, E., Nikaido, H. & Hofnung, M. Nucleic Acids Res. 10, 7449–7458 (1982).

    Article  CAS  Google Scholar 

  29. Bell, A. W. et al. J. biol. Chem. 261, 7652–7658 (1986).

    CAS  PubMed  Google Scholar 

  30. Evans, I. J. & Downie, J. A. Gene (in the press).

  31. Gill, D. R., Hatfull, G. F. & Salmond, G. P. C. Molec. gen. Genet. (submitted).

  32. Jaurez, A., Hughes, C., Vogel, M. & Goebel, W. Molec. gen. Genet. 197, 196–203 (1984).

    Article  Google Scholar 

  33. Rossen, L., Johnston, A. W. B. & Downie, J. A. Nucleic Acids Res. 12, 9497–9508 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, C., Hiles, I., Salmond, G. et al. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323, 448–450 (1986). https://doi.org/10.1038/323448a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323448a0

  • Springer Nature Limited

This article is cited by

Navigation