Skip to main content
Log in

Activation of two signal-transduction systems in hepatocytes by glucagon

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The ability of glucagon to stimulate glycogen breakdown in liver played a key part in the classic identification of cyclic AMP and hormonally stimulated adenylate cyclase1. But several observations indicate that glucagon can exert effects independent of elevating intracellular cAMP concentrations2–7. These effects are probably mediated by an elevation8,9 of the intracellular concentration of free Ca2+ although the mechanism by which this occurs is unknown. We show here that glucagon, at the low concentrations found physiologically, causes both a breakdown of inositol phospholipids and the production of inositol phosphates. Indeed, we show that the glucagon analogue, (1-N-α-trinitrophenylhistidine,12-homo-arginine)glucagon (TH-glucagon), which does not activate adenylate cyclase or cause any increase in cAMP in hepatocytes yet can fully stimulate glycogenolysis, gluconeogenesis and urea synthesis10, stimulates the production of inositol phosphates. This stimulation of inositol phospholipid metabolism by low concentrations of glucagon provides a mechanism11,12 whereby glucagon can exert cAMP-independent actions on target cells. We suggest that hepatocytes possess two distinct receptors for glucagon, a GR-1 receptor coupled to stimulate inositol phospholipid breakdown and a GR-2 receptor coupled to stimulate adenylate cyclase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sutherland, E. W. & Rall, T. W. J. biol. Chem. 232, 1077–1091 (1958).

    CAS  Google Scholar 

  2. Birnbaum, M. J. & Fain, J. N. J. biol. Chem. 252, 528–535 (1977).

    CAS  Google Scholar 

  3. Okajima, F. & Ui, M. Archs Biochem. Biophys. 175, 549–557 (1976).

    Article  CAS  Google Scholar 

  4. Cardenas-Tanus, R. & Garcia-Sainz, J. A. FEBS Lett. 143, 1–4 (1982).

    Article  CAS  Google Scholar 

  5. Khan, B. A., Bregman, M. D., Nugent, C. A., Hruby, V. J. & Brendel, K. Biochem. biophys. Res. Commun. 93, 729–736 (1980).

    Article  CAS  Google Scholar 

  6. Heyworth, C. M., Wallace, A. V. & Houslay, M. D. Biochem. J. 214, 99–110 (1983).

    Article  CAS  Google Scholar 

  7. Heyworth, C. M. & Houslay, M. D. Biochem. J. 214, 93–98 (1983).

    Article  CAS  Google Scholar 

  8. Sistaire, F. D., Picking, R. A. & Haynes, R. C. J. biol. Chem. 260, 12744–12747 (1985).

    Google Scholar 

  9. Mauger, J.-P. & Claret, M. FEBS Lett. 195, 106–110 (1986).

    Article  CAS  Google Scholar 

  10. Corvera, S. et al. Biochim. biophys. Acta 804, 434–441 (1984).

    Article  CAS  Google Scholar 

  11. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Downes, C. P. & Michell, R. H. Molec. Aspects Cell Regul. 4, 2–56 (1985).

    Google Scholar 

  13. Creba, J. A., Downes, C. P., Hawkins, P. T., Brewster, G., Michell, R. H. & Kirk, C. J. Biochem. J. 212, 733–747 (1983).

    Article  CAS  Google Scholar 

  14. Houslay, M. D. & Elliott, K. R. F. FEBS Lett. 359–363 (1979).

  15. Heyworth, C. M., Whetton, A. D., Wong, S., Martin, R. B. & Houslay, M. D. Biochem. J. 228, 593–603 (1985).

    Article  CAS  Google Scholar 

  16. Heyworth, C. M., Hanski, E. & Houslay, M. D. Biochem. J. 222, 189–194 (1984).

    Article  CAS  Google Scholar 

  17. Thomas, A. P., Alexander, J. & Williamson, J. F. J. biol Chem. 259, 5574–5584 (1984).

    CAS  PubMed  Google Scholar 

  18. Bocckino, S. B., Blackmore, P. F. & Exton, J. H. J. biol Chem. 260, 14201–14207 (1985).

    CAS  PubMed  Google Scholar 

  19. Heyworth, C. M., Wilson, S. R., Gawler, D. & Houslay, M. D. FEBS Lett. 187, 196–200 (1985).

    Article  CAS  Google Scholar 

  20. Sonne, O., Berg, T. & Christofferson, T. J. biol. Chem. 253, 3203–3210 (1978).

    CAS  Google Scholar 

  21. Musso, G. F., Assoian, R. K., Kaiser, E. T., Kezdy, F. J. & Tager, H. S. Biochem. biophys. Res. Commun. 119, 713–719 (1984).

    Article  CAS  Google Scholar 

  22. Heyworth, C. M. & Houslay, M. D. Biochem. J. 214, 547–552 (1983).

    Article  CAS  Google Scholar 

  23. Berridge, M. J., Downes, C. P. & Hanley, M. R. Biochem. J. 206, 587–595 (1982).

    Article  CAS  Google Scholar 

  24. Bregman, M. D., Trivedi, D. & Hruby, V. J. J. biol Chem. 255, 11725–11733 (1980).

    CAS  PubMed  Google Scholar 

  25. Berridge, M. J., Dawson, R. M. C., Downes, C. P., Heslop, J. P. & Irvine, R. F. Biochem. J. 212, 473–482 (1983).

    Article  CAS  Google Scholar 

  26. Houslay, M. D., Metcalfe, J. C., Warren, G. B., Hesketh, T. R. & Smith, G. A. Biochim. biophys. Acta 436, 489–494 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakelam, M., Murphy, G., Hruby, V. et al. Activation of two signal-transduction systems in hepatocytes by glucagon. Nature 323, 68–71 (1986). https://doi.org/10.1038/323068a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323068a0

  • Springer Nature Limited

This article is cited by

Navigation