Skip to main content
Log in

The crystal structure of d(GGATGGGAG) forms an essential part of the binding site for transcription factor IIIA

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 11 September 1986

Abstract

Most genes in higher organisms are activated by the binding of proteins called transcription factors. One such protein, transcription factor IIIA (TFIIIA) from the frog, activates the gene for 5S RNA by binding to the region of the gene between nucleotides 45 and 97. This binding site has been defined by a variety of biochemical studies, including base-deletion experiments and DNase I footprinting1. The protein also binds to the gene product: in immature frogs it is stored as a complex with 58 RNA. From the observation that TFIIIA can bind to either double-helical DNA or RNA, and from their own measurements, Rhodes and Klug2 have proposed that the DNA-binding site for TFIIIA has an RNA-like structure. Here we present the crystal structure analysis of a part of the DNA-binding site (nucleotides 81–89 of the gene) which forms a particularly strong interaction with the protein, and show that it has a conformation similar to the A′ form of double-helical RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, D. D. Harvey Lect. 76, 27–44 (1982).

    Google Scholar 

  2. Rhodes, D. & Klug, A. Cell 46, 123–132 (1986).

    Article  CAS  Google Scholar 

  3. Miller, J., McLachlan, A. D. & Klug, A. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  Google Scholar 

  4. Rosenberg, U. B. et al. Nature 319, 336–339 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Vincent, A., Colot, H. V. & Rosbach, M. J. molec. Biol. 186, 149–166 (1985).

    Article  CAS  Google Scholar 

  6. Hartshorne, T. A., Blumberg, H. & Young, E. T. Nature 320, 283–287 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Rhodes, D. EMBO J. 4, 3473–3482 (1985).

    Article  CAS  Google Scholar 

  8. Sakonju, S. & Brown, D. D. Cell 31, 395–405 (1982).

    Article  CAS  Google Scholar 

  9. Fairall, L., Rhodes, D. & Klug, A. Cell (submitted).

  10. Sakonju, S., Bogenhagen, D. F. & Brown, D. D. Cell 19, 13–25 (1980).

    Article  CAS  Google Scholar 

  11. Bodenhagen, D. F., Sakonju, S. & Brown, D. D. Cell 19, 27–35 (1980).

    Article  Google Scholar 

  12. Gait, M. J., Matthes, H. W. D., Singh, M., Sproat, B. S. & Titmus, R. C. Nucleic Acids Res. 10, 6243–6254 (1982).

    Article  CAS  Google Scholar 

  13. Conner, B. N., Yoon, C., Dickerson, J. L. & Dickerson, R. E. J. molec. Biol. 174, 663–695 (1984).

    Article  CAS  Google Scholar 

  14. Wang, A. H.-J., Fujii, S., van Boom, J. H. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 79, 3968–3972 (1982).

    Article  ADS  CAS  Google Scholar 

  15. McCall, M. J., Brown, T. & Kennard, O. J. molec. Biol. 183, 385–396 (1985).

    Article  CAS  Google Scholar 

  16. Sussman, J. L., Holbrook, S. R., Church, G. M. & Kirn, S. H. Acta crystallogr. A33, 800–804 (1977).

    Article  Google Scholar 

  17. Hendrickson, W. A. & Konnert, J. H. in Biomolecular Structure, Conformation, Function and Evolution Vol. 1 (ed. Srinivasan, R.) 43–57 (Pergamon, Oxford, 1981).

    Book  Google Scholar 

  18. Wilson, A. J. C. Nature 150, 152 (1942).

    Article  ADS  Google Scholar 

  19. Arnott, S. & Hukins, D. W. L. Biochem. biophys. Res. Commun. 47, 1504–1509 (1972).

    Article  CAS  Google Scholar 

  20. Calladine, C. R. & Drew, H. R. J. molec. Biol. 178, 773–782 (1984).

    Article  CAS  Google Scholar 

  21. Arnott, S., Hukins, D. W. L. & Dover, S. D. Biochem. biophys. Res. Commun. 48, 1392–1399 (1972).

    Article  CAS  Google Scholar 

  22. Arnott, S., Hukins, D. W. L., Dover, S. D., Fuller, W. & Hodgson, A. R. J. molec. Biol. 81, 107–122 (1973).

    Article  CAS  Google Scholar 

  23. Nilsson, L., Clore, G. M., Gronenborn, A. M., Brünger, A. T. & Karplus, M. J. molec. Biol. 188, 455–475 (1986).

    Article  CAS  Google Scholar 

  24. Drew, H. R. & Travers, A. A. Cell 37, 491–502 (1984).

    Article  CAS  Google Scholar 

  25. Haran, T. thesis, Weizmann Inst. (1986).

  26. Shakked, Z. et al. J. molec. Biol. 166, 183–201 (1983).

    Article  CAS  Google Scholar 

  27. Kadonaga, J. T., Jones, K. A. & Tjian, R. Trends biochem. Sci. 11, 20–23 (1986).

    Article  CAS  Google Scholar 

  28. Rabinovich, D. & Shakked, Z. Acta crystallogr. A40, 195–200 (1984).

    Article  Google Scholar 

  29. Watson, J. D. & Crick, F. H. C. Nature 171, 737–738 (1953).

    Article  ADS  CAS  Google Scholar 

  30. Franklin, R. E. & Gosling, R. G. Acta crystallogr. 6, 673–677 (1953).

    Article  CAS  Google Scholar 

  31. Langridge, R. et al. J. molec. Biol. 2, 38–64 (1960).

    Article  CAS  Google Scholar 

  32. Fuller, W., Wilkins, M. H. F., Wilson, H. R. & Hamilton, L. D. J. molec. Biol. 12, 60–80 (1965).

    Article  CAS  Google Scholar 

  33. Arnott, S. Nature 320, 313 (1986).

    Article  ADS  CAS  Google Scholar 

  34. Huber, P. W. & Wool, I. G. Proc. natn. Acad. Sci. U.S.A. 83, 1593–1597 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCall, M., Brown, T., Hunter, W. et al. The crystal structure of d(GGATGGGAG) forms an essential part of the binding site for transcription factor IIIA. Nature 322, 661–664 (1986). https://doi.org/10.1038/322661a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322661a0

  • Springer Nature Limited

This article is cited by

Navigation