Skip to main content

Advertisement

Log in

Cryptic simplicity in DNA is a major source of genetic variation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DNA regions which are composed of a single or relatively few short sequence motifs usually in tandem (‘pure simple sequences’) have been reported in the genomes of diverse species (for reviews see refs 1–4), and have been implicated in a range of functions including gene regulation (for reviews see refs 5–7), signals for gene conversion and recombination8–10, and the replication of telomeres11They are thought to accumulate by DNA slippage12–16 and mispairing during replication and recombination or extension of single-strand ends2,4,10,11. In order to systematize the range of DNA simplicity and the genetic nature of the regions that are simple, we have undertaken an extensive computer search of the DNA sequence library of the European Molecular Biology Laboratory (EMBL)17. We show here that nearly all possible simple motifs occur 5–10 times more frequently than equivalent random motifs. Furthermore, a new computer algorithm reveals the widespread occurrence of significantly high levels of a new type of ‘cryptic simplicity’ in both coding and noncoding DNA. Cryptically simple regions are biased in nucleotide composition and consist of scrambled arrangements of repetitive motifs which differ within and between species. The universal existence of DNA simplicity from monotonous arrays of single motifs to variable permutations of relatively short-lived motifs suggests that ubiquitous slippage-like mechanisms are a major source of genetic variation in all regions of the genome, not predictable by the classical mutation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamada, H., Petrino, M. G. & Kakunaga, T. Proc. natn. Acad. Sci. U.S.A. 79, 6465–6469 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Tautz, D. & Renz, M. Nucleic Acids Res. 12, 4127–4138 (1984).

    Article  CAS  Google Scholar 

  3. Greaves, D. R. & Patient, R. K. EMBO J. 4, 2617–2626 (1985).

    Article  CAS  Google Scholar 

  4. Dover, G. A. & Tautz, D. Phil. Trans. R. Soc. 312, 275–290 (1986).

    Article  CAS  Google Scholar 

  5. Wang, A. J. H. et al. Nature 282, 680–686 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Weintraub, H. & Groudine, M. Science 193, 348–856 (1976).

    Article  Google Scholar 

  7. Hentschel, C. C. Nature 295, 714–716 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Shen, S. H., Slighton, J. L. & Smithies, O. Cell 26, 191–203 (1981).

    Article  CAS  Google Scholar 

  9. Goodman, M. Bioessays 3, 9–14 (1985).

    Article  CAS  Google Scholar 

  10. Jeffreys, A. J., Wilson, V. & Thein, S. L. Nature 314, 67–72 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Blackburn, E. & Szostak, J. A. Rev. Biochem. 53, 163–152 (1984).

    Article  CAS  Google Scholar 

  12. Drake, J. W., Glickman, B. W. & Ripley, L. S. Am. Scient. 71, 621–630 (1983).

    ADS  Google Scholar 

  13. Streisinger, G. et al. Cold Spring Harb. Symp. quant. Biol. 31, 77–84 (1966).

    Article  CAS  Google Scholar 

  14. Wells, R. D., Ohtsuka, E. & Khorana, H. G. J. molec. Biol. 14, 221–240 (1965).

    Article  CAS  Google Scholar 

  15. Morgan, A. R. et al. Biochemistry 13, 1596–1603 (1974).

    Article  CAS  Google Scholar 

  16. Efstratiadis, A. et al. Cell 21, 653–668 (1980).

    Article  CAS  Google Scholar 

  17. Cameron, G. et al. EMBL Sequence Data Library Release 4 (1985).

  18. Bird, A. P. Nucleic Acids Res. 8, 1499–1504 (1980).

    Article  CAS  Google Scholar 

  19. Straus, N. A. & Birnboim, H. C. Biochim. biophys. Acta 454, 419–428 (1976).

    Article  CAS  Google Scholar 

  20. Karlin, S. & Ghandour, G. Proc. natn. Acad. Sci. U.S.A. 5800-5804 (1985).

  21. Karlin, S., Ghandour, G. & Foulser, D. E. Molec. Biol. Evol. 2, 35–45 (1985).

    CAS  PubMed  Google Scholar 

  22. Rogers, J. Nature 305, 101–102 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Yaffe, D. et al. Nucleic Acids Res. 13, 3723–3737 (1985).

    Article  CAS  Google Scholar 

  24. Steinert, P. M. et al. Nature 302, 794–800 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Hassouna, N., Michot, B. & Bachellerie, J. P. Nucleic Acids Res. 12, 3563–3583 (1984).

    Article  CAS  Google Scholar 

  26. Moore, G. P. Trends biochem. Sci. 8, 411–414 (1983).

    Article  CAS  Google Scholar 

  27. Jones, W. C. & Kafatos, F. C. J. molec. Evol. 19, 87–103 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Brown, S. D. M. & Piechaczyk, M. J. molec. Biol. 165, 249–256 (1983).

    Article  CAS  Google Scholar 

  29. Ohno, S. & Epplen, J. T. Proc. natn. Acad. Sci. U.S.A. 80, 3391–3395 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Dover, G. A. Nature 299, 1121–119 (1982).

    Article  Google Scholar 

  31. Coen, E. S., Thoday, J. M. & Dover, G. A. Nature 295, 564–568 (1982).

    Article  ADS  CAS  Google Scholar 

  32. Strachan, T., Webb, D. A. & Dover, G. A. EMBO J. 4, 1701–1708 (1985).

    Article  CAS  Google Scholar 

  33. Dover, G. A. & Flavell, R. B. Cell 38, 623–624 (1984).

    Article  Google Scholar 

  34. Ohta, T. & Dover, G. A. Genetics 108, 501–528 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kneale, G. G. & Kennard, O. Biochem. Soc. Trans. 12, 1011–1014 (1984).

    Article  CAS  Google Scholar 

  36. Kost, T. A. et al. Nucleic Acids Res. 11, 8287–8301 (1983).

    Article  CAS  Google Scholar 

  37. Nudel, U. et al. Nucleic Acids Res. 11, 1759–1771 (1983).

    Article  CAS  Google Scholar 

  38. Hanukoglu, I. & Fuchs, E. Cell 33, 915–924 (1983).

    Article  CAS  Google Scholar 

  39. Hadjiolov, A. A. et al. Nucleic Acids Res. 12, 3677–3583 (1984).

    Article  CAS  Google Scholar 

  40. Chan, Y. L., Olvera, J. & Wool, I. G. Nucleic Acids Res. 11, 7819–7831 (1983).

    Article  CAS  Google Scholar 

  41. Dover, G. A. Trends Genet. 2, 159–165 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tautz, D., Trick, M. & Dover, G. Cryptic simplicity in DNA is a major source of genetic variation. Nature 322, 652–656 (1986). https://doi.org/10.1038/322652a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322652a0

  • Springer Nature Limited

This article is cited by

Navigation