Skip to main content
Log in

Role of ion flux in the control of c-fos expression

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

There has been much interest in the biochemical and biophysical processes that couple extracellular signals to alterations in gene expression. While many early events associated with the treatment of cells with growth factors have been described (for example, ion flux and protein phosphorylation1,2), it has proved difficult to establish biochemical links to gene expression. Recently, the study of such genomic control signals has been facilitated by the demonstration that the c-fos proto-oncogene is rapidly and transiently induced by treatment of several cell types with polypeptide growth factors and other growth modulating substances3–8. In one particular system it has been shown that nerve growth factor (NGF) causes a transient induction of c-fos in the phaeo-chromocytoma cell line PC12, within 15 min9–11. Furthermore, the magnitude of this induction can be modulated with pharmacological agents such as peripheral-type benzodiazepines (BZDs)9. Thus, the study of c-fos expression in PC12 cells could yield valuable clues to the coupling mechanisms linking cell surface activation to genomic events. Here we demonstrate that c-fos is induced in PC12 cells either by receptor–ligand interaction or by agents or conditions that effect voltage-dependent calcium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halegoua, S. & Patrick, J. Cell 22, 571–581 (1980).

    Article  CAS  Google Scholar 

  2. Rozengurt, E. & Heppel, G. A. Proc. natn. Acad. Sci. U.S.A. 72, 4492–4495 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Greenberg, M. E. & Ziff, E. B. Nature 311, 433–438 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Cochran, B. H. et al. Science 226, 1080–1082 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Kruijer, W. et al. Nature 312, 711–716 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Muller, R. et al. Nature 312, 716–720 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Bravo, R. et al. EMBO J. 4, 1193–1197 (1985).

    Article  CAS  Google Scholar 

  8. Muller, R. et al. Nature 314, 546–548 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Curran, T. & Morgan, J. I. Science 229, 1265–1268 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Kruijer, W., Schubert, D. & Verma, I. M. Proc. natn. Acad. Sci. U.S.A. 82, 7330–7334 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Greenberg, M. E., Green, L. A. & Ziff, E. B. J. biol. Chem. 260, 14101–14110 (1985).

    CAS  PubMed  Google Scholar 

  12. Schubert, D. et al. Nature 273, 718–723 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Traynor, A. & Schubert, D. Devl Brain Res. 14, 197–203 (1984).

    CAS  Google Scholar 

  14. Kazda, S. et al. Arzneimittel Forsch. 30, 2144–2162 (1980).

    CAS  Google Scholar 

  15. Toll, L. J. biol. Chem. 257, 13189–13192 (1982).

    CAS  PubMed  Google Scholar 

  16. Prozialeck, W. C. & Weiss, B. J. Pharmac. exp. Ther. 222, 509–516 (1982).

    CAS  Google Scholar 

  17. Nishizuka, Y. Nature 308, 693–697 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Schatzman, R. C., Wise, B. C. & Kuo, J. F. Biochem. biophys. Res. Commun. 98, 669–676 (1981).

    Article  CAS  Google Scholar 

  19. Hidaka, H. & Tanaka, T. Meth. Enzym. 102, 185–194 (1983).

    Article  CAS  Google Scholar 

  20. Shanes, A. M. Pharmac. Rev. 10, 59–274 (1958).

    CAS  Google Scholar 

  21. Narahashi, T. Physiol. Rev. 54, 813–889 (1974).

    Article  CAS  Google Scholar 

  22. Narahashi, T., Moore, J. W. & Scott, W. R. J. gen. Physiol. 47, 965–974 (1964).

    Article  CAS  Google Scholar 

  23. Dichter, M. A., Tischler, A. S. & Greene, L. A. Nature 268, 501–504 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Schramm, M. et al. Nature 303, 535–537 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Greenberg, D. A., Carpenter, C. L. & Cooper, E. C. J. Neurochem. 45, 990–993 (1985).

    Article  CAS  Google Scholar 

  26. Nowycky, M. C., Fox, A. P. & Tsien, R. W. Proc. natn. Acad. Sci. U.S.A. 82, 2178–2182 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Treisman, R. Cell 42, 889–902 (1985).

    Article  CAS  Google Scholar 

  28. Bazett-Jones, D. P., Yeckel, M. & Gottesfeld, J. M. Nature 317, 824–828 (1985).

    Article  ADS  CAS  Google Scholar 

  29. White, B. A. J. biol. Chem. 260, 1213–1217 (1985).

    CAS  PubMed  Google Scholar 

  30. Hann, S. R., Thompson, C. B. & Eisenman, R. E. Nature 314, 366–369 (1985).

    Article  ADS  CAS  Google Scholar 

  31. Thompson, C. B. et al. Nature 314, 363–366 (1985).

    Article  ADS  CAS  Google Scholar 

  32. Muller, R. & Wagner, E. F. Nature 311, 438–442 (1984).

    Article  ADS  CAS  Google Scholar 

  33. Greene, L. A. & Tischler, A. S. Proc. natn. Acad. Sci. U.S.A. 73, 2424–2428 (1976).

    Article  ADS  CAS  Google Scholar 

  34. Curran, T. et al. Molec. cell Biol. 5, 167–172 (1985).

    Article  CAS  Google Scholar 

  35. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, J., Curran, T. Role of ion flux in the control of c-fos expression. Nature 322, 552–555 (1986). https://doi.org/10.1038/322552a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322552a0

  • Springer Nature Limited

This article is cited by

Navigation