Skip to main content
Log in

Expression of peptide chain release factor 2 requires high-efficiency frameshift

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Peptide chain release factors are soluble proteins that participate in the stop codon-dependent termination of polypeptide biosynthesis. In Escherichia coli, two release factors are necessary for peptide chain termination: release factor 1 (RF1) specifies UAG-and UAA-dependent termination whereas release factor 2 (RF2) specifies UGA- and UAA-dependent termination1. Release factors are found in low concentrations relative to other translation factors2, suggesting that their expression is tightly regulated and, accordingly, making the study of their structure–function relationship difficult. RF1 and RF2 exhibit significant sequence homology, probably reflecting their similar functions and perhaps a common evolutionary origin3. DNA and peptide sequencing have suggested the existence of a unique mechanism for the autogenous regulation of RF2 in which an in-frame UGA stop codon requires an obligatory +1 frameshift within the coding region of the RF2 gene. In this report we present in vitro experimental results consistent with the autogenous regulation of RF2. Additionally, we used RF2-lacZ gene fusions to demonstrate that autogenous regulation occurs, at least in part, by premature termination at the in-frame stop codon, since deletion of this stop codon leads to overproduction of the RF2–LacZ fusion protein. Frameshifting at this premature termination codon occurs at the remarkably high rate of 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caskey, C. T. Trends biochem. Sci. 5, 234–237 (1980).

    Article  CAS  Google Scholar 

  2. Klein, H. A. & Capecchi, M. R. J. biol. Chem. 256, 1055–1061 (1971).

    Google Scholar 

  3. Craigen, W. J., Cook, R. G., Tate, W. P. & Caskey, C. T. Proc. natn. Acad. Sci. U.S.A. 82, 3616–3620 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Scolnick, E., Tompkins, R., Caskey, T. & Nirenberg, M. Proc. natn. Acad. Sci. U.S.A. 61, 768–774 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Nomura, M., Jinks-Robertson, S. & Miura, A. in Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression (eds Grunberg-Manago, M. & Safer, B.) 91–104 (Elsevier, Amsterdam, 1982).

    Book  Google Scholar 

  6. Weiss, R. Proc. natn. Acad. Sci. U.S.A. 81, 5797–5801 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Weiss, R. & Gallant, J. Genetics (in the press).

  8. Bossi, L. J. molec. Biol. 164, 73–87 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Murgola, E. J., Pagel, F. T. & Hijazi, K. A. J. molec. Biol. 175, 19–27 (1984).

    Article  CAS  Google Scholar 

  10. Carrier, M. J. & Buckingham, R. H. J. molec. Biol. 175, 29–38 (1984).

    Article  CAS  Google Scholar 

  11. Dunn, J. J. & Studier, F. W. J. molec. Biol. 166, 477–535 (1983).

    Article  CAS  Google Scholar 

  12. Jacks, T. & Varmus, H. E. Science 230, 1237–1242 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Clare, J. & Farabaugh, P. Proc. natn. Acad. Sci. U.S.A. 82, 2829–2833 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Atkins, J. F., Elseviers, D. & Gorini, L. Proc. natn. Acad. Sci. U.S.A. 69, 1192–1196 (1972).

    Article  ADS  CAS  Google Scholar 

  15. Caskey, C. T., Scolnick, E., Tomkins, R., Milman, G. & Goldstein, J. Meth. Enzym. 20, 367–375 (1971).

    Article  Google Scholar 

  16. Caskey, C. T., Forrester, W. C., Tate, W. P. & Ward, C. J. Bact. 158, 365–368 (1984).

    CAS  PubMed  Google Scholar 

  17. Miller, J. H. Experiments in Molecular Genetics, 355 (Cold Spring Harbor Laboratory, New York, 1972).

    Google Scholar 

  18. Uhlin, B. E. & Nordström, K. Plasmid 1, 1–8 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craigen, W., Caskey, C. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322, 273–275 (1986). https://doi.org/10.1038/322273a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322273a0

  • Springer Nature Limited

This article is cited by

Navigation