Skip to main content
Log in

Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The generation of an acidic pH in intracellular organelles is required for several membrane and protein recycling processes. For instance, the internalization of ligands by receptor-mediated endocytosis is followed by the development of an acidic pH inside endosomes; this allows dissociation of the ligand, which is then transported to the lysosomes, from the receptor, which is recycled to the cell surface1–4. There is evidence that part of this recycling process involves the distal region of the Golgi complex, where terminal glycosylation occurs: when the plasma membrane transferrin receptor is desialylated by neuraminidase treatment, it acquires new sialic acid molecules after endocytosis and before cell-surface re-expression5. Golgi membranes have been shown to contain a proton pump6 and the distal Golgi cisternae appear to have an acidic content7. Here, we have studied the effects of chloroquine and ammonium chloride, which raise the pH of acidic intracellular compartments8, on the processing and secretion of immunoglobulins by plasma cells. Sialic acid transfer to terminal galactose residues, a reaction known to occur in the distal Golgi shortly before secretion9, is completely and rapidly inhibited in the presence of these drugs, without significant modification of the secretion rate. This effect is accompanied by a dilatation of the Golgi cisternae and is not rapidly reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, M. S., Anderson, R. G. W. & Goldstein, J. L. Cell 32, 663–667 (1983).

    Article  CAS  Google Scholar 

  2. Tycko, B., Keith, C. H. & Maxfield, F. R. J. Cell Biol. 97, 1762–1776 (1983).

    Article  CAS  Google Scholar 

  3. Schwartz, A. L., Bolognesi, A. & Fridovich, S. E. J. Cell Biol. 98, 732–738 (1984).

    Article  CAS  Google Scholar 

  4. Harford, J., Wolkoff, A. W., Ashwell, G. & Klausner, R. D. J. Cell Biol. 96, 1824–1828 (1983).

    Article  CAS  Google Scholar 

  5. Snider, M. D. & Rogers, O. C. J. Cell Biol. 100, 826–834 (1985).

    Article  CAS  Google Scholar 

  6. Glickman, J., Croen, K., Kelly, S. & Al-Awqati, Q. J. Cell Biol. 97, 1303–1308 (1983).

    Article  CAS  Google Scholar 

  7. Anderson, R. G. W. & Pathak, R. K. Cell 40, 635–643 (1985).

    Article  CAS  Google Scholar 

  8. de Duve, C. et al Biochem. Pharmac. 23, 2495–2534 (1974).

    Article  CAS  Google Scholar 

  9. Tartakoff, A. & Vassalli, P. J. Cell Biol. 83, 284–299 (1979).

    Article  CAS  Google Scholar 

  10. Chicheportiche, Y., Vassalli, P. & Tartakoff, A. M. J. Cell Biol. 99, 2200–2210 (1984).

    Article  CAS  Google Scholar 

  11. Bretz, R., Bretz, H. & Palade, G. E. J. Cell Biol. 84, 87–101 (1980).

    Article  CAS  Google Scholar 

  12. Basu, S. K., Goldstein, J. L., Anderson, R. G. W. & Brown, M. S. Cell 24, 493–502 (1981).

    Article  CAS  Google Scholar 

  13. Tartakoff, A. & Vassalli, P. J. exp. Med. 146, 1332–1345 (1977).

    Article  CAS  Google Scholar 

  14. Dunphy, W. G. & Rothman, J. E. J. Cell Biol. 97, 270–275 (1983).

    Article  CAS  Google Scholar 

  15. Roth, J. & Berger, E. G. J. Cell Biol. 97, 270–275 (1983).

    Article  Google Scholar 

  16. Roth, J., Lucocq, J. & Charest, P. M. J. Histochem. Cytochem. 32, 1167–1176 (1984).

    Article  CAS  Google Scholar 

  17. Roth, J., Taatjes, D. J., Lucocq, J. M., Weinstein, J. & Paulson, J. C. Cell 43, 287–295 (1985).

    Article  CAS  Google Scholar 

  18. Anderson, J., Coutinho, A., Lenhardt, W. & Melchers, F. Cell 10, 27–34 (1977).

    Article  Google Scholar 

  19. Thorens, B., Schulz, M.-F. & Vassalli, P. EMBO J. 4, 361–368 (1985).

    Article  CAS  Google Scholar 

  20. O'Farrel, P. H. J. biol. Chem. 250, 4007–4021 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorens, B., Vassalli, P. Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature 321, 618–620 (1986). https://doi.org/10.1038/321618a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321618a0

  • Springer Nature Limited

This article is cited by

Navigation