Skip to main content
Log in

Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Bacterial chemotaxis provides a simple model system for the more complex sensory responses of multicellular eukaryotic organisms1. In Escherichia coli, methylation and demethylation of four related membrane proteins, the methyl-accepting chemotaxis proteins (or MCPs), is central to chemotactic sensing and signal transduction2. Three of these proteins, Tar, Tsr and Trg, have been assigned specific roles in chemotaxis. However, the role of the fourth MCP, Tap, has remained obscure3. We demonstrate here that Tap functions as a conventional signal transducer, enabling the cell to respond chemotactically to dipeptides. This provides the first evidence of specific bacterial chemotaxis towards peptides. Peptide taxis requires the function of a periplasmic component of the dipeptide permease. This protein represents the first example of a periplasmic chemoreceptor that does not have a sugar substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koshland, D. E. Jr Bacterial Chemotaxis as a Model Behavioral System (Raven, New York, 1980).

    Google Scholar 

  2. Hazelbauer, G. L. & Harayama, S. Int. Rev. Cytol. 81, 33–70 (1983).

    Article  CAS  Google Scholar 

  3. Slocum, M. K. & Parkinson, J. S. J. Bact. 163, 586–594 (1985).

    CAS  PubMed  Google Scholar 

  4. Wang, E. A. & Koshland, D. E. Jr Proc. natn. Acad. Sci. U.S.A. 77, 7157–7161 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Hazelbauer, G. L. & Adler, J. Nature 230, 101–104 (1971).

    CAS  Google Scholar 

  6. Zukin, R. S., Hartig, P. R. & Koshland, D. E. Jr Biochemistry 18, 5599–5605 (1979).

    Article  CAS  Google Scholar 

  7. Mesibov, R. & Adler, J. J. Bact. 112, 315–326 (1972).

    CAS  PubMed  Google Scholar 

  8. Tso, W-W. & Adler, J. J. Bact. 118, 560–576 (1974).

    CAS  PubMed  Google Scholar 

  9. Springer, M. S., Goy, M. F. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 74, 3312–3316 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Kondoh, H., Ball, C. B. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 76, 260–264 (1977).

    Article  ADS  Google Scholar 

  11. Slocum, M. K. & Parkinson, J. S. J. Bact. 155, 565–577 (1983).

    CAS  PubMed  Google Scholar 

  12. Krikos, A., Mutoh, N., Boyd, A. & Simon, M. I. Cell 33, 615–622 (1983).

    Article  CAS  Google Scholar 

  13. Boyd, A., Krikos, A. & Simon, M. I. Cell 26, 333–343 (1981).

    Article  CAS  Google Scholar 

  14. Higgins, C. F. & Hardie, M. M. J. Bact. 155, 1434–1438 (1983).

    CAS  PubMed  Google Scholar 

  15. Guter, C. A., Morgan, D. G., Osheroff, N. & Staros, J. V. J. biol. Chem. 260, 10812–10816 (1985).

    Google Scholar 

  16. Higgins, C. F. & Gibson, M. M. Meth. Enzym. 125, 365–377 (1986).

    Article  CAS  Google Scholar 

  17. Higgins, C. F. Microbiology, 17–20 (ASM, Washington, DC, 1984).

  18. Payne, J. W. (ed.) Microorganisms and Nitrogen Sources, 211–256 (Wiley, Chichester, UK, 1980).

  19. Higgins, C. F., Hardie, M. M., Jamieson, D. J. & Powell, L. M. J. Bact. 153, 830–836 (1983).

    CAS  PubMed  Google Scholar 

  20. Hogarth, B. G. & Higgins, C. F. J. Bact. 153, 1548–1551 (1983).

    CAS  PubMed  Google Scholar 

  21. Hiles, I. D. & Higgins, C. F. (in preparation).

  22. Gibson, M. M., Price, M. & Higgins, C. F. J. Bact. 160, 122–130 (1984).

    CAS  PubMed  Google Scholar 

  23. Jamieson, D. J. & Higgins, C. F. J. Bact. 160, 131–136 (1984).

    CAS  PubMed  Google Scholar 

  24. Parkinson, J. S. & Houts, S. E. J. Bact. 151, 106–113 (1982).

    CAS  PubMed  Google Scholar 

  25. Adler, J. J. gen. Microbiol. 74, 77–91 (1973).

    Article  CAS  Google Scholar 

  26. Callahan, A. M. & Parkinson, J. S. J. Bact. 161, 96–104 (1985).

    CAS  PubMed  Google Scholar 

  27. Dahl, M. K. & Manson, M. D. J. Bact. 164, 1057–1063 (1985).

    CAS  PubMed  Google Scholar 

  28. Berg, H. C. & Block, S. M. J. gen. Microbiol. 130, 2915–2920 (1984).

    CAS  PubMed  Google Scholar 

  29. Manson, M. D., Boos, W., Bassford, P. J. & Rasmussen, B. A. J. boil. Chem. 260, 9727–9733 (1985).

    CAS  Google Scholar 

  30. Koman, A., Harayama, S. & Hazelbauer, G. L. J. Bact. 138, 739–747 (1979).

    CAS  PubMed  Google Scholar 

  31. Manson, M. D. & Kossman, M. J. Bact. 165, 34–40 (1986).

    Article  CAS  Google Scholar 

  32. Ames, G. F.-L. & Higgins, C. F. Trends. biochem. Sci. 8, 97–100 (1983).

    Article  CAS  Google Scholar 

  33. Ames, G. F.-L. A. Rev. Biochem. (in the press).

  34. Perry, D. & Gilvarg, C. J. Bact. 160, 943–948 (1984).

    CAS  PubMed  Google Scholar 

  35. Cowell, J. L. J. Bact. 120, 139–146 (1974).

    CAS  PubMed  Google Scholar 

  36. Russo, A. F. & Koshland, D. E. Jr J. Bact. 165, 276–282 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manson, M., Blank, V., Brade, G. et al. Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature 321, 253–256 (1986). https://doi.org/10.1038/321253a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321253a0

  • Springer Nature Limited

This article is cited by

Navigation