Skip to main content

Advertisement

Log in

Carbonate recrystallization in basal sediments: evidence for convective fluid flow on a ridge flank

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

In many Deep Sea Drilling Project (DSDP) drill holes, chalks and/or limestones and even dolomites overlie oceanic basement rocks. These occurrences have often been interpreted as the result of increased calcium carbonate dissolution and reprecipitation as cement and overgrowths (recrystallization) at higher prevailing temperatures, either near an oceanic ridge system or at greater burial depths (burial diagnesis). We report here detailed chemical and isotopic analyses of carbonate sediments recovered from a drill hole on the western flank of the East Pacific Rise during Leg 92 of DSDP. This hole was drilled on 4.6-Myr old oceanic crust and recovered chalks directly overlying oceanic basement at a depth as shallow as 8 m below the sediment/water interface. Oceanic basement was not reached in this hole because of the hardness of deeper chalks, or, more likely, limestones. The chemical and isotopical evidence, detailed below, shows that considerable calcite recrystallization did occur in an aqueous medium similar to normal seawater and at relatively low temperature. This suggests that the observed recrystallization of calcareous ooze to chalk and limestone took place not as a result of burial diagenesis at higher temperatures, but as a result of extensive advective pore water flow through the sediments, which would allow recrystallization of calcium carbonate to take place. This process was, and apparently still is, widespread in the south-east Pacific Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kastner, M., Hu, J.-Y. & Gieskes, J. M. Init. Rep. DSDP 92 (in the press).

  2. Quilty, P. G. et al. Init. Rep. DSDP 34, 779–794 (1976).

    Google Scholar 

  3. Bass, M. N. Init. Rep. DSDP 34, 611–624 (1976).

    Google Scholar 

  4. Rea, D. K. & Leinen, M. Init. Rep. DSDP 92 (in the press).

  5. Hobart, M. Init. Rep. DSDP 92 (in the press).

  6. Sclater, J. G., Anderson, R. N. & Bell, M. L. J. geophys. Res. 76, 7888–7915 (1971).

    Article  ADS  Google Scholar 

  7. Geiskes, J. M. & Boulegue, J. Init. Rep. DSDP 92 (in the press).

  8. Bender, M. L. et al. Earth planet Sci. Lett. 76, 71–83 (1985/1986).

    Article  ADS  CAS  Google Scholar 

  9. Knuttel, S. & Romine, K. Init. Rep. DSDP 92 (in the press).

  10. Berger, W. H. & Winterer, E. L. Int. Ass. Sedim. Spec. Publ. 1, 11–48 (1974).

    Google Scholar 

  11. van Andel, Tj. H., Heath, G. R. & Moore, T. C. Geol. Soc. Am. Mem. 143 (1975).

  12. Broecker, W. S. & Broecker, S. Soc. Econ. Paleont. Miner. Spec. Publ. 20, 44–57 (1974).

    CAS  Google Scholar 

  13. Berger, W. H., Adelseck, C. G. & Mayer, L. A. J. geophys. Res. 81, 2617–2627 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Romine, K. Init. Rep. DSDP 92 (in the press).

  15. Schlanger, S. O. & Douglas, R. G. Int. Ass. Sedim. Spec. Publ. 1, 117–148 (1974)

    Google Scholar 

  16. Baker, P. A., Gieskes, J. M. & Elderfield, H. J. Sedim. Petrol. 52, 71–82 (1982).

    CAS  Google Scholar 

  17. Killingley, J. S. Nature 301, 594–597 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Garrison, R. E., Mein, J. R. & Anderson, T. F. Sedimentology 20, 399–410 (1973).

    Article  ADS  CAS  Google Scholar 

  19. Katz, A., Sass, E., Starinsky, A. & Holland, H. D. Geochim. cosmochim. Acta 36, 481–496 (1972).

    Article  ADS  CAS  Google Scholar 

  20. Douglas, R. G. & Savin, S. M. Init. Rep. DSDP 17, 591–605 (1973).

    Google Scholar 

  21. Douglas, R. G. & Savin, S. M. Init. Rep. DSDP 32, 509–520 (1975).

    CAS  Google Scholar 

  22. Savin, S. & Yeh, H. W. in The Sea Vol. 7, (ed. Emiliani, C.) 1521–1554 (Wiley-Interscience) (1981).

    Google Scholar 

  23. Berger, W. H., Vincent, E. & Thierstein, H. R. Soc. Econ. Paleont. Miner. Spec. Publ. 32, 489–304 (1981).

    Google Scholar 

  24. O'Neil, J. R., Clayton, R. N. & Mayeda, T. K. J. chem. Phys. 51, 5547–5558 (1969).

    Article  ADS  CAS  Google Scholar 

  25. Kroopnick, P., Weiss, R. F. & Craig, H. Earth planet. Sci. Lett. 76, 103–110 (1972).

    Article  ADS  Google Scholar 

  26. Emrich, K., Ekhalt, D. H. & Vogel, J. C. Earth planet. Sci. Lett. 8, 363–371 (1970).

    Article  ADS  CAS  Google Scholar 

  27. Turner, J. V. Geochim. cosmochim. Acta 46, 1183–1191 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastner, M., Gieskes, J. & Hu, JY. Carbonate recrystallization in basal sediments: evidence for convective fluid flow on a ridge flank. Nature 321, 158–161 (1986). https://doi.org/10.1038/321158a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321158a0

  • Springer Nature Limited

This article is cited by

Navigation