Skip to main content
Log in

The inositol tris/tetrakisphosphate pathway—demonstration of Ins(l,4,5)P3 3-kinase activity in animal tissues

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Recent advances in our understanding of the role of inositides in cell signalling have led to the central hypothesis that a receptorstimulated phosphodiesteratic hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)1,2 results in the formation of two second messengers, diacylglycerol3 and inositol 1,4,5-trisphosphate (Ins(l,4,5)P3)4. The existence of another pathway of inositide metabolism was first suggested by the discovery that a novel inositol trisphosphate, Ins(l,3,4)P3, is formed in stimulated tissues5; the metabolic kinetics of Ins(l,3,4)P3 are entirely different from those of Ins(l,4,5)P3 (refs 6, 7). The probable route of formation of Ins(l,3,4)P3 was recently shown to be via a 5-dephosphorylation of inositol 1,3,4,5-tetrakisphosphate (Ins(l,3,4,5)P4), a compound which is rapidly formed on muscarinic stimulation of brain slices, and which can be readily converted to Ins(l,3,4)P3 by a 5-phosphatase in red blood cell membranes8. However, the source of Ins(l,3,4,5)P4 is unclear, and an attempt to detect a possible parent lipid, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), was unsuccessful8. The recent discovery that the higher phosphorylated forms of inositol (InsP5 and InsP6) also exist in animal cells9 suggested that inositol phosphate kinases might not be confined to plant and avian tissues, and here we show that a variety of animal tissues contain an active and specific Ins(l,4,5)P3 3-kinase. We therefore suggest that an inositol tris/tetrakisphosphate pathway exists as an alternative route to the dephosphorylation10,11 of Ins(l,4,5)P3. The function of this novel pathway is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berridge, M. J. Biochem. J. 220, 345–360 (1984).

    Article  CAS  Google Scholar 

  2. Downes, C. P. & Michell, R. H. in Molecular Mechanisms of Transmembrane Signalling (eds Cohen, P. & Houslay, M. D.) 3–56 (Elsevier, Amsterdam, 1985).

    Google Scholar 

  3. Nishizuka, Y. Nature 308, 693–698 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Irvine, R.F., Letcher, A.J., Lander, D.J. & Downes, C.P. Biochem. J. 223, 237–243 (1984).

    Article  CAS  Google Scholar 

  6. Irvine, R.F., Änggård, E.E., Letcher, A.J. & Downes, C.P. Biochem. J. 229, 505–511 (1985).

    Article  CAS  Google Scholar 

  7. Burgess, G.M., McKinney, J.S., Irvine, R.F. & Putney, J.W. Biochem. J. 232, 237–243 (1985).

    Article  CAS  Google Scholar 

  8. Batty, I. R., Nahorski, S. R. & Irvine, R. F. Biochem. J. 232, 211–215 (1985).

    Article  CAS  Google Scholar 

  9. Heslop, J.P., Irvine, R.F., Tashjian, A.H. & Berridge, M.J. J. exp. Biol. 119, 395–402 (1985).

    CAS  PubMed  Google Scholar 

  10. Downes, C. P., Mussatt, M. C. & Michell, R. H. Biochem. J. 203, 169–177 (1982).

    Article  CAS  Google Scholar 

  11. Storey, D. J., Shears, S. B., Kirk, C. J. & Michell, R. H. Nature 312, 374–376 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Connolly, T. M., Bross, T. E. & Majerus, P. W. J. biol. Chem. 260, 7868–7874 (1985).

    CAS  PubMed  Google Scholar 

  13. Irvine, R. F. & Dawson, R. M. C. J. Neurochem. 31, 1427–1434 (1978).

    Article  CAS  Google Scholar 

  14. Connolly, T. M., Wilson, D. B., Bross, T. E. & Majerus, P. W. J. biol. Chem. 261, 122–126 (1986).

    CAS  PubMed  Google Scholar 

  15. Rittenhouse, S. E. & Sasson, J. P. J. biol. Chem. 260, 8657–8660 (1985).

    CAS  PubMed  Google Scholar 

  16. Mills, G. B., Cragoe, E. J., Gelfand, E. W. & Grinstein, S. J. biol. Chem. 260, 12500–12507 (1985).

    CAS  PubMed  Google Scholar 

  17. Downes, C. P. & Michell, R. H. Biochem. J. 202, 53–58 (1982).

    Article  CAS  Google Scholar 

  18. Irvine, R. F., Letcher, A. J. & Dawson, R. M. C. Biochem. J. 218, 177–185 (1984).

    Article  CAS  Google Scholar 

  19. Wilson, D. W., Bross, T. E., Sherman, W. R., Berger, R. A. & Majerus, P. W. Proc. natn. Acad. Sci. U.S.A. 82, 4013–4017 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Dawson, R. M. C., Freinkel, N., Jungawala, F. B. & Clarke, N. Biochem. J. 122, 605–607 (1971).

    Article  CAS  Google Scholar 

  21. Wilson, D. B. et al. J. biol. Chem. 260, 13496–13501 (1985).

    CAS  PubMed  Google Scholar 

  22. Irvine, R. F., Hemington, N. & Dawson, R. M. C. Biochem. J. 164, 177–180 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, R., Letcher, A., Heslop, J. et al. The inositol tris/tetrakisphosphate pathway—demonstration of Ins(l,4,5)P3 3-kinase activity in animal tissues. Nature 320, 631–634 (1986). https://doi.org/10.1038/320631a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320631a0

  • Springer Nature Limited

This article is cited by

Navigation