Skip to main content
Log in

The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Many short synthetic peptides have now been shown to induce antibodies reactive with their cognate sequences in the intact folded protein1–8. Aside from the usefulness of such antibodies as site-specific reagents, the frequency with which this recognition occurs has raised several theoretical issues, the central one being that of how an antibody to a short synthetic peptide, which represents one of the most disordered states of a site in a protein, can react with the more ordered version of the same sequence in the folded protein. This apparent paradox can be resolved if the target site on the protein approaches disorder or if the peptide in solution or on a carrier adopts, with significant frequency, a conformation compatible with that of the cognate site in the protein. Various studies already suggest that antigenic sites in proteins correspond to regions of high atomic mobility1,9–15. We now show, using high-field nuclear magnetic resonance (NMR) spectroscopy, that a nonapeptide selected by several monoclonal antibodies as the immunodominant site of a 36-amino-acid immunogen (residues 75–110 of influenza virus haemagglutinin16,17) adopts a highly populated type-II reverse-turn conformation in water. This suggests that in this case the antibodies have selected a sequence possessing a conformational preference. Apart from helping us to understand immunological recognition, anti-peptide antibodies may provide reagents of sufficient precision for an immunological approach to the problem of protein folding18–23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lerner, R. A. Adv. Immun. 36, 1–44 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Lerner, R. A. Nature 299, 592–596 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Enea, V. et al. Science 225, 628–630 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ballou, W. R. et al. Science 228, 996–999 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Chow, M., Yabrov, R., Bittle, J., Hogle, J. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 82, 910–914 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Kris, R. M. et al. Cell 40, 619–625 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Lamb, R. A., Zebedee, S. L. & Richardson, C. D. Cell 40, 627–633 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt, M. A., O'Hanley, P. & Schoolnik, G. K. J. exp. Med. 161, 705–717 (1984).

    Article  Google Scholar 

  9. Artymiuk, P. J. et al. Nature 280, 563–568 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Moore, G. R. & Williams, R. J. P. Eur. J. Biochem. 103, 543–550 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Westhof, E. et al. Nature 311, 123–126 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Tainer, J. A. et al. Nature 312, 127–133 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Williams, R. J. P. & Moore, G. R. Trends biochem. Sci. 10, 96–97 (1985).

    Article  Google Scholar 

  14. Tainer, J. A., Getzoff, E. D., Paterson, Y., Olson, A. J. & Lerner, R. A. A. Rev. Immun. 3, 501–535 (1985).

    Article  CAS  Google Scholar 

  15. Hirayama, A., Takagaki, Y. & Karush, F. J. Immun. 134, 3241–3247 (1985).

    CAS  PubMed  Google Scholar 

  16. Wilson, I. A. et al. Cell 37, 767–778 (1984).

    Article  CAS  PubMed  Google Scholar 

  17. Wilson, I. A., Wiley, D. C. & Skehel, J. J. Nature 289, 366–373 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Sachs, D. H., Schechter, A. N., Eastlake, A. & Anfinsen, C. B. Proc. natn. Acad. Sci. U.S.A. 69, 3790–3794 (1972).

    Article  ADS  CAS  Google Scholar 

  19. Sachs, D. H., Schechter, A. N., Eastlake, A. & Anfinsen, C. B. J. Immun. 109, 1300–1310 (1972).

    CAS  PubMed  Google Scholar 

  20. Anfinsen, C. B. & Scheraga, H. A. Adv. Protein Chem. 29, 205–300 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Wetlaufer, D. B. Adv. Protein Chem. 34, 61–92 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Teale, J. M. & Benjamin, D. C. J. biol. Chem. 251, 4609–4615 (1976).

    CAS  PubMed  Google Scholar 

  23. Celada, F., Fowler, A. V. & Zabin, I. Biochemistry 17, 5156–5160 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Aue, W. P., Bartholdi, E. & Ernst, R. R. J. chem. Phys. 64, 2229–2246 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Bax, A. & Freeman, R. J. magn. Reson. 44, 542–561 (1981).

    ADS  CAS  Google Scholar 

  26. Rance, M. et al. Biochem. biophys. Res. Commun. 117, 479–485 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Grathwohl, C. & Wuthrich, K. Biopolymers 20, 2623–2633 (1981).

    Article  CAS  Google Scholar 

  28. Deslauriers, R. & Smith, I. C. P. in Biological Magnetic Resonance Vol. 2 (eds Berliner, L. J. & Reuben, J.) 243–344 (Plenum, New York, 1980).

    Book  Google Scholar 

  29. Urry, D. W. & Ohnishi, M. in Spectroscopic Approaches to Biomolecular Conformation (ed. Urry, D. W.) 263–300 (American Medical Association, Chicago, 1970).

    Google Scholar 

  30. Shenderovich, M. D., Nikiforovich, G. V. & Chipens, G. I. J. magn. Reson. 59, 1–12 (1984).

    ADS  CAS  Google Scholar 

  31. Bystrov, V. F. Prog. NMR Spectrosc. 10, 41–81 (1976).

    Article  Google Scholar 

  32. Crumpton, M. J. & Small, P. A. J. molec. Biol. 26, 143–146 (1967).

    Article  CAS  PubMed  Google Scholar 

  33. Conway-Jacobs, A., Schechter, B. & Sela, M. Biochemistry 9, 4870–4875 (1970).

    Article  CAS  PubMed  Google Scholar 

  34. Schechter, B., Conway-Jacobs, A. & Sela, M. Eur. J. Biochem. 20, 321–324 (1971).

    Article  CAS  PubMed  Google Scholar 

  35. Houghten, R. A. Proc. natn. Acad. Sci. U.S.A. 82, 5131–5135 (1985).

    Article  ADS  CAS  Google Scholar 

  36. Guittet, E., Delsuc, M. A. & Lallemand, J. Y. J. Am. chem. Soc. 106, 4278–4279 (1984).

    Article  CAS  Google Scholar 

  37. Plateau, P. & Gueron, M. J. Am. chem. Soc. 104, 7311–7312 (1982).

    Article  Google Scholar 

  38. Benoiton, L. Can. J. Chem. 40, 570–572 (1962).

    Article  CAS  Google Scholar 

  39. Itoh, M., Hagiwara, D. & Kamiya, T. Tetrahedron Lett. 49, 4393–4394 (1975).

    Article  Google Scholar 

  40. Mendz, G. L. & Moore, W. J. Biochem. J. 229, 305–313 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jane Dyson, H., Cross, K., Houghten, R. et al. The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn. Nature 318, 480–483 (1985). https://doi.org/10.1038/318480a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318480a0

  • Springer Nature Limited

This article is cited by

Navigation