Skip to main content
Log in

High-resolution solid-state NMR of quadrupolar nuclei

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Quadrupolar nuclei are the most abundant nuclear magnetic resonance (NMR)-receptive nuclei in the Earth's crust, and in many amorphous materials of technological interest (such as zeolite catalysts, ceramics and alloys), and have thus been intensively studied1–7. Of particular interest is the ability to resolve and quantitate the various types of sites present in a given material. Here we present a very simple, yet we believe powerful, approach towards the resolution of chemically non-equivalent sites in solids, which combines a conventional high-field spin-echo NMR method with the resolution enhancement of the ‘quadrupole shift’ approach4,7. We demonstrate its application to the complete resol-ution of both the (1/2, 3/2) and (3/2, 5/2) transitions of the 27Al nuclei in a mixture of potassium and ammonium alums (KAl(SO4)2·12H2O and NH4Al(SO4)2·12H2O).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fyfe, C. A., Thomas, J. M., Klinowski, J. & Gobbi, G. C. Angew. Chem. int. Edn. Engl. 22, 259–275 (1983).

    Article  Google Scholar 

  2. Oldfield, E. & Kirkpatrick, R. J. Science 227, 1537–1544 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Ganapathy, S., Schramm, S. & Oldfield, E. J. chem. Phys. 77, 4360–4365 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Schramm, S. & Oldfield, E. JCS chem. Commun. 980–981 (1982).

  5. Weitekamp, D.P., Bielecki, A., Zax, D., Zilm, K. & Pines, A. Phys. Rev. Lett. 50, 1807–1810 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Bielecki, A. et al. J. chem. Phys. 80, 2232–2234 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Zax, D. B., Bielecki, A., Pines, A. & Sirrton, S. W. Nature 312, 351–352 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Solomon, I., Phys. Rev. 110, 61–65 (1958).

    Article  ADS  CAS  Google Scholar 

  9. Butterworth, J. Proc. Phys. Soc. 86, 297–304 (1965).

    Article  ADS  CAS  Google Scholar 

  10. Bonera, G. & Galimberti, M. Solid St. Commun. 4, 589–591 (1966).

    Article  ADS  CAS  Google Scholar 

  11. Weisman, I. D. & Bennett, L. H. Phys. Rev. 181, 1341–1350 (1969).

    Article  ADS  CAS  Google Scholar 

  12. Bloom, M., Davis, J. H. & MacKay, A. L. Chem. Phys. Lett. 80, 198–202 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Sternin, E., Bloom, M. & MacKay, A. L. J. magn. Res. 55, 274–282 (1983).

    ADS  CAS  Google Scholar 

  14. Pound, R. V. Phys. Rev. 79, 685–702 (1950).

    Article  ADS  CAS  Google Scholar 

  15. Burns, G. J. chem. Phys. 32, 1585–1586 (1960).

    Article  ADS  CAS  Google Scholar 

  16. Weiden, N. & Weiss, A. Ber. Bunsenges. phys. Chem. 78, 1031–1050 (1974).

    CAS  Google Scholar 

  17. Weiden, N. & Weiss, A. Ber. Bunsenges. phys. Chem. 79, 557–563 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldfield, E., Timken, H., Montez, B. et al. High-resolution solid-state NMR of quadrupolar nuclei. Nature 318, 163–165 (1985). https://doi.org/10.1038/318163a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318163a0

  • Springer Nature Limited

This article is cited by

Navigation