Skip to main content

Advertisement

Log in

Optimization strategies gleaned from biological evolution

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Several problems, in particular the ‘travelling salesman’ problem1 wherein one seeks the shortest route encompassing a randomly distributed group of cities, have been optimized by repeated random alteration (mutation) of a trial solution followed by selection of the cheaper (fitter) solution. Most non-trivial problems have complicated fitness functions, and optimization tends to become stuck in local fitness maxima. A recently introduced strategy to escape (simulated annealing) involves accepting unfavourable mutations with finite probability1–3. Independently, there has been interest in genetic strategies which overcome the problem of fitness maxima in biological evolution4–6, and several authors have applied biological elements to optimization7,8. Here we use computer algorithms to investigate new strategies for the 64-city travelling salesman problem, which combine conventional optimization or ‘quenching’ with biological elements, namely having a population of trial solutions, helping weaker individuals to survive, and an analogue of sexual crossing-over of genes. The new strategies were faster and gave better results than simulated annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirkpatrick, S., Gelatt, C. D. Jr & Vecchi, M. P. Science 220, 671–680 (1983).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Vanderbilt, D. & Louie, S. G. J. Comput. Phys. 56, 259–271 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  3. Smith, W. E., Barrett, H. H. & Paxman, R. G. Opt. Lett. 8, 199 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Dobzhansky, T., Ayala, F. J., Stebbins, G. L. & Valentine, J. W. Evolution, 165–191 (Freeman, San Francisco, 1977).

    Google Scholar 

  5. Kourilsky, P. & Gachelin, G. La Recherche 155, 642–653 (1983).

    Google Scholar 

  6. Dover, G. A. BioScience 32, 526–533 (1982).

    Article  CAS  Google Scholar 

  7. De Jong, K. IEEE Trans. Syst., Man, Cybern. 10, 566–574 (1980).

    Article  Google Scholar 

  8. Holland, J. H. Adaption in Natural and Artificial Systems (University of Michigan, Ann Arbor, 1975).

    MATH  Google Scholar 

  9. Darwin, C. On the origin of Species 1st edn (facsimile Harvard University Press, 1964).

    Google Scholar 

  10. Stanley, S. M. The New Evolutionary Timetable, 72–109 (Harper and Row, London, 1981).

    Google Scholar 

  11. Perlmutter, R. M. et al. Adv. Immun. 35, 1–37 (1984).

    Article  CAS  Google Scholar 

  12. Kaartinen, M., Griffiths, G. M., Markham, A. F. & Milstein, C. Nature 304, 320–324 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Dyson, F. J. Disturbing the Universe, 218–224 (Pan, London, 1981).

    Google Scholar 

  14. Feyerabend, P. Against Method (NLB, London, 1975).

    Google Scholar 

  15. Kuhn, T. S. The Structure of Scientific Revolutions 2nd edn (University of Chicago Press, 1970).

    Google Scholar 

  16. Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. Cogn. Sci. 9, 147–169 (1985).

    Article  Google Scholar 

  17. Hopfield, J. J. Proc. natn Acad. Sci. U.S.A. 79, 2554–2558 (1982).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Holland, J. H. Progress in Theoretical Biology Vol. 4 (eds Rosen, R. & Snell, F. M.) 263–293 (Academic, New York, 1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, R. Optimization strategies gleaned from biological evolution. Nature 317, 804–806 (1985). https://doi.org/10.1038/317804a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317804a0

  • Springer Nature Limited

This article is cited by

Navigation