Skip to main content
Log in

Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The relationship between cell shape and function has long been of interest1–9. However, although the behaviour of the cytoskeleton during the cell cycle has been studied extensively10–12 variations in the shape and three-dimensional substructure of the nucleus are less well documented. The spatial distribution of chromatin has previously been studied by a mathematical analysis of the optical densities of stained nuclei13–15, allowing an indirect derivation of the three-dimensional distribution of chromatin. More direct information on chromatin organization can be obtained from electron-microscopic serial sections, although this is very laborious. Using an iterative deconvolution algorithm, Agard and Sedat16 achieved a degree of optical sectioning in conventional fluorescence microscopy and reconstructed the three-dimensional arrangement of polytene chromosomes. We report here on the three-dimensional structure of cultured mammalian cells as visualized by confocal scanning laser microscopy (CSLM). The exceptionally short depth of field of this imaging technique provides direct optical sectioning which, together with its higher resolution, makes CSLM extremely useful for studying the three-dimensional morphology of biological structures17–19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson, D'A.W. On Growth and Form (Cambridge University Press, 1942).

    MATH  Google Scholar 

  2. Penman, S. et al. Cold Spring Harb. Symp. quant. Biol. 46, 1013–1028 (1982).

    Article  Google Scholar 

  3. Bissel, M. J., Hall, H. G. & Parry, G. J. theor. Biol. 99, 31–68 (1982).

    Article  Google Scholar 

  4. Folkman;, J. & Moscona, A. Nature 273, 345–349 (1978).

    Article  ADS  Google Scholar 

  5. Tomasek, J. J., Hay, E. D. & Fujiwara, K. Devl. Biol. 92, 107–122 (1984).

    Article  Google Scholar 

  6. Trinkaus, J. P. Cells into Organs (Prentice-Hall, New York, 1984).

    Google Scholar 

  7. Harris, A. K. Lect. Not. Biomath. 55, 103–122 (1985).

    Article  Google Scholar 

  8. Soranno, T. & Bell, E. J. Cell Biol. 95, 127–136 (1982).

    Article  CAS  Google Scholar 

  9. Kirschner, M. in Developmental Order: Its Origin and Regulation (eds Subtelny, S. S. & Green, P. B.) 117–132 (Liss, New York, 1982).

    Google Scholar 

  10. De Brabander, M., De Mey, J., Van Veire, R. & Geuens, G. Cell Biol. int. Rep. 1, 453–461 (1977).

    Article  CAS  Google Scholar 

  11. Brinkley, B. R. Cold Spring Harb. Symp. quant. Biol. 46, 1029–1040 (1982).

    Article  Google Scholar 

  12. Fulton, A. The Cytoskeleton: Cellular Architecture and Choreography (Chapman & Hall, New York, 1984).

    Book  Google Scholar 

  13. Belmont, A. S. & Nicolini, C. J. cell. Sci. 58, 201–209 (1982).

    CAS  PubMed  Google Scholar 

  14. Kendall, F., Swanson, R., Borun, T., Rowinsky, J. & Nicolini, C. Science 196, 1106–1109 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Nicolini, C. J. submicrosc. Cytol. 12, 475–505 (1980).

    Google Scholar 

  16. Agard, D. A. & Sedat, J. W. Nature 302, 676–681 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Van der Voort, H. T. M., Brakenhoff, G. J., Valkenburg, J. A. C. & Nanninga, N. Scanning 7, 66–78 (1985).

    Article  Google Scholar 

  18. Wijnaendts van Resandt, R. W. et al. J. Microsc. 138, 29–34 (1985).

    Article  Google Scholar 

  19. Carlsson, K. et al. Opt. Lett. 10, 53–55 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Sheppard, C. J. R. & Choudhury, A. Optica 24, 1051–1073 (1977).

    Article  ADS  Google Scholar 

  21. Brakenhoff, G. J., Blom, P. & Barends, P. J. J. Microsc. 117, 219–232 (1979).

    Article  Google Scholar 

  22. Agutter, P. S. & Richardson, J. C. W. J. Cell Sci. 44, 395–435 (1980).

    CAS  PubMed  Google Scholar 

  23. Maul, G. G. (ed.) Wistar Symp. Ser. Vol. 2 (Liss, New York, 1982).

  24. Kendall, F. M., Beltrane, F., Zietz, S., Belmont, A. & Nicolini, C. Cell Biophys. 2, 373–404 (1980).

    Article  CAS  Google Scholar 

  25. Stahl, A. in The Nucleolus (eds Jordan, E. G. & Cullis, C. A.) 1–24 (Springer, New York, 1982).

    Google Scholar 

  26. Hadjiolov, A. A. Cell Biol. Monogr. 12 (1985).

  27. Wiegant, F. A. C., Tuyl, M. & Linnemans, W. A. M. Int. J. Hyperth. 1, 157–169 (1985).

    Article  CAS  Google Scholar 

  28. Van Bergen Henegouwen, P. M. P. et al. Int. J. Hyperth. 1, 69–83 (1985).

    Article  Google Scholar 

  29. Crissman, H. A. & Tobey, R. A. Science 184, 1297–1298 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brakenhoff, G., van der Voort, H., van Spronsen, E. et al. Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature 317, 748–749 (1985). https://doi.org/10.1038/317748a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317748a0

  • Springer Nature Limited

This article is cited by

Navigation