Skip to main content
Log in

Role of intracellular calcium mobilization in the regulation of protein kinase C-mediated membrane processes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Phorbol esters are potent tumour-promoting agents that exert pleiotropic effects on cells1–3. Among these are the control of growth4, stimulation of release of stored bioactive constituents5–8 and regulation of growth-factor surface receptors9–13. Phorbol esters bind to and activate protein kinase C, leading to the phosphorylation of specific protein substrates presumed to be necessary for eliciting the full response6,8–12,14,15. Strong evidence exists that specific binding of tumour promoter occurs at the membrane level in intact cells, resulting in activation of protein kinase C16,17. Recent evidence concerning the release of bioactive constituents from platelets5,8,14,18,19 and neutrophils5,6 has linked agonist-induced protein kinase C activation and Ca2+ mobilization in a synergistic mechanism8,20,21. Here we present a novel model of synergism between Ca2+ and phorbol esters that leads to transferrin receptor phosphorylation and down-regulation in HL-60 human leukaemic cells. Raising intracellular Ca2+, although ineffective by itself, increases the potency and rate of action of phorbol ester for activating protein kinase C and mediating transferrin receptor phosphorylation and down-regulation. We propose a molecular model in which increased intracellular Ca2+ recruits protein kinase C to the plasma membrane, thus ‘priming’ the system for activation by phorbol ester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wertz, P. W. & Mueller, G. C. Cancer Res. 38, 2900–2904 (1978).

    CAS  PubMed  Google Scholar 

  2. Diamond, L., O'Brien, T. & Rovera, G. Life Sci. 23, 1979–1988 (1978).

    Article  CAS  Google Scholar 

  3. Rovera, G., Santoil, D. & Damsky, C. Proc. natn. Acad. Sci. U.S.A. 76, 2779–2783 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Cooper, R. A., Brunwald, A. D. & Kuo, A. L. Proc. natn. Acad. Sci. U.S.A. 79, 2865–2869 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Sha'afi, R. I. et al. Biochem. biophys. Res. Commun. 114, 638–645 (1983).

    Article  CAS  Google Scholar 

  6. White, J. R. et al. J. biol. Chem. 259, 8605–8611 (1984).

    CAS  PubMed  Google Scholar 

  7. DiVirgilio, F., Lew, D. P. & Pozzan, T. Nature 310, 691–693 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Nishizuka, Y. Nature 308, 693–697 (1984).

    Article  ADS  CAS  Google Scholar 

  9. May, W. S. Jr, Jacobs, S. & Cuatrecasas, P. Proc. natn. Acad. Sci. U.S.A. 81, 2016–2020 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Cohen, S., Carpenter, G. & King, L. J. biol. Chem. 255, 4834–4842 (1980).

    CAS  PubMed  Google Scholar 

  11. Cooper, J. A., Bowen-Pope, D. F., Raines, E., Ross, R. & Hunter, T. Cell 31, 263–273 (1982).

    Article  CAS  Google Scholar 

  12. Jacobs, S. J., Sahjoun, N., Saltiel, A. S. & Cuatrecasas, P. Proc. natn. Acad. Sci. U.S.A. 80, 6211–6213 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Iwashita, S. & Fox, C. F. J. biol. Chem. 259, 2559–2567 (1984).

    CAS  PubMed  Google Scholar 

  14. Fujikura, T. & Nishizuka, Y. J. biol. Chem. 258, 6701–6704 (1983).

    PubMed  Google Scholar 

  15. Rovera, G. et al. Ann. N.Y. Acad. Sci. 397, 211–220 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Castagna, M. et al. J. biol. Chem. 257, 7847–7851 (1982).

    CAS  PubMed  Google Scholar 

  17. Niedel, J. E., Kuhn, L. J. & Vandenbark, G. P. Proc. natn. Acad. Sci. U.S.A. 80, 36–40 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Kaibuchi, K., Sano, K., Hoshijima, M., Takai, Y. & Nishzuka, Y. Cell Calcium 3, 323–335 (1982).

    Article  CAS  Google Scholar 

  19. Yamanishi, J. et al. Biochem. biophys. Res. Commun. 112, 778–786 (1983).

    Article  CAS  Google Scholar 

  20. Sutherland, R. et al. Proc. natn. Acad. Sci. U.S.A. 78, 4515–4519 (1981).

    Article  ADS  CAS  Google Scholar 

  21. May, W. S., Sahyoun, N., Jacobs, S., Wolf, M. & Cuatrecasas, P. J. biol. Chem. 260, 9419–9426 (1985).

    CAS  PubMed  Google Scholar 

  22. May, W. S. Jr, Sayhoun, N. E., Le Vine, H. III, Jacobs, S. & Cuatrecasas, P. Clin. Res. 32, 498A (1984).

  23. Wolf, M., LeVine, H. III, May, W. S. Jr, Cuatrecasas, P. & Sahyoun, N. Nature 317, 546–551 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Kraft, A. S. & Anderson, W. B. Nature 301, 621–623 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Klausner, R. D., Harford, J. & van Renswonda, J. Proc. natn. Acad. Sci. U.S.A. 81, 3005–3009 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Nishizuka, Y. Trends biochem. Sci. 8, 13–16 (1983).

    Article  CAS  Google Scholar 

  27. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, W., Sahyoun, N., Wolf, M. et al. Role of intracellular calcium mobilization in the regulation of protein kinase C-mediated membrane processes. Nature 317, 549–551 (1985). https://doi.org/10.1038/317549a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317549a0

  • Springer Nature Limited

This article is cited by

Navigation