Skip to main content
Log in

In vitro reactivation of anaphase spindle elongation using isolated diatom spindles

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A key step for analysing the mechanochemistry of mitosis would be the isolation of a functional spindle capable of anaphase chromosome movement in vitro. Although Mazia and Dan first isolated spindles in 19521, with one or two possible exceptions2–4, isolated spindles are non-functional (reviewed in ref. 5). An alternative approach has used permeabilized cells to study anaphase chromosome movement6–10, but these preparations are biochemically and morphologically complex, and hence difficult to analyse. We describe here a simple procedure for isolating diatom spindles which are capable of anaphase spindle elongation in vitro. With addition of ATP, the two half-spindles slide completely apart, with concomitant decrease in the zone of overlap. Electron microscopy reveals decreased numbers of microtubules throughout the spindle after ATP addition and confirms the complete absence of structures beyond the spindle poles. These results are inconsistent with theoretical models of mitosis which suggest that spindle poles are pushed apart by microtubule growth11, are pulled apart by external forces applied to the poles12–15, or are released from tension generated during spindle formation16. The results are consitent with models that postulate mechanical interactions in the zone of microtubule overlap as a factor in spindle elongation17,18.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazia, D. & Dan, K. Proc. natn. Acad. Sci. U.S.A. 38, 826–838 (1952).

    Article  ADS  CAS  Google Scholar 

  2. Sakai, H., Hiramoto, Y. & Kuriyama, R. Devl Growth Differentiation 17, 265–274 (1975).

    Article  CAS  Google Scholar 

  3. Sakai, H. et al. Devl Growth Differentiation 18, 211–219 (1976).

    Article  CAS  Google Scholar 

  4. Goode, D. & Roth, L. E. Expl Cell Res. 58, 343–352 (1969).

    Article  CAS  Google Scholar 

  5. Zimmerman, A. M. & Forer, A. in Mitosis/ Cytokinesis (eds Zimmerman, A. M. & Forer, A.) 327–336 (Academic, New York, 1981).

    Google Scholar 

  6. Hoffman-Berling, H. Biochim. biophys. Acta 15, 226–236 (1954).

    Article  Google Scholar 

  7. Cande, W. Z., Snyder, J. A., Smith, D., Summers, K. & Mclntosh, J. R. Proc. natn. Acad. Sci. U.S.A. 71, 1559–1563 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Cande, W. Z. & Wolniak, S. M. J. Cell Biol. 79, 573–580 (1978).

    Article  CAS  Google Scholar 

  9. Cande, W. Z., McDonald, K. & Meeusen, R. L. J. Cell Biol. 88, 618–629 (1981).

    Article  CAS  Google Scholar 

  10. Cande, W. Z. Cell 28, 15–22 (1982).

    Article  CAS  Google Scholar 

  11. Inoué, S. in Primitive Motile Systems in Cell Biology (eds Alien, R. D. & Kamiya, N.) 549–598 (Academic, New York, 1964).

    Book  Google Scholar 

  12. Aist, J. R. & Berns, M. W. J. Cell Biol. 91, 446–458 (1981).

    Article  CAS  Google Scholar 

  13. Bajer, A. S. J. Cell Biol. 93, 33–49 (1982).

    Article  CAS  Google Scholar 

  14. King, S. M., Hyams, J. S. & Luba, A. J. Cell Biol. 94, 341–349 (1982).

    Article  CAS  Google Scholar 

  15. Kronebusch, P. J. & Borisy, G. G. in Biological Functions of Microtubules and Related Structures (eds Sakai, H., Mohri, H. & Borisy, G. G.) 233–245 (Academic, New York,1982).

    Book  Google Scholar 

  16. Snyder, J. A., Golub, R. J. & Berg, S. P. Eur. J. cell. Biol. 35, 62–69 (1984).

    CAS  PubMed  Google Scholar 

  17. McIntosh, J. R., Hepler, P. K. & Van Wie, D. G. Nature 224, 659–663 (1969).

    Article  ADS  Google Scholar 

  18. Margolis, R. L., Wilson, L. & Kiefer, B. I. Nature 272, 450–452 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Pickett-Heaps, J. D. & Tippit, D. H. Cell 14, 455–467 (1978).

    Article  CAS  Google Scholar 

  20. McDonald, K. L., Pickett-Heaps, J. D., Mclntosh, J. R. & Tippit, D. H. J. Cell Biol. 74, 377–388 (1977).

    Article  CAS  Google Scholar 

  21. McDonald, K. L., Edwards, M. K. & McIntosh, J. R. J. Cell Biol. 83, 443–461 (1979).

    Article  CAS  Google Scholar 

  22. Pickett-Heaps, J. D., Tippit, D. H. & Leslie, R. Eur. J. Cell Biol. 21, 1–11 (1980).

    CAS  PubMed  Google Scholar 

  23. Euteneuer, U. & McIntosh, J. R. J. Cell Biol. 87, 509–515 (1980).

    Article  CAS  Google Scholar 

  24. Telzer, B. R. & Haimo, L. T. J. Cell Biol. 89, 373–378 (1981).

    Article  CAS  Google Scholar 

  25. Soranno, T. & Pickett-Heaps, J. D. Eur. J. Cell Biol. 26, 234–243 (1982).

    CAS  PubMed  Google Scholar 

  26. Leslie, R. J. & Pickett-Heaps, J. D. Cell 36, 717–727 (1984).

    Article  CAS  Google Scholar 

  27. Inoué, S. J. Cell Biol. 91(2) 131s–147s (1981).

    Article  Google Scholar 

  28. Pickett-Heaps, J. D., Tippit, D. H. & Porter, K. R. Cell 29, 729–744 (1982).

    Article  CAS  Google Scholar 

  29. Leslie, R. J. & Pickett-Heaps, J. D. J. Cell Biol. 96, 548–561 (1983).

    Article  CAS  Google Scholar 

  30. Guillard, R. R. L. in Culture of Marine Invertebrate Animals (eds Smith, W. & Chanley, H.) 21–88 (Academic, New York,1975).

    Google Scholar 

  31. Cande, W. Z., Tooth, P. J. & Kendrick-Jones, J. J. Cell Biol. 97, 1062–1071 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cande, W., McDonald, K. In vitro reactivation of anaphase spindle elongation using isolated diatom spindles. Nature 316, 168–170 (1985). https://doi.org/10.1038/316168a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316168a0

  • Springer Nature Limited

This article is cited by

Navigation