Skip to main content

Advertisement

Log in

Similarities between interleukin-2 receptor number and affinity on activated B and T lymphocytes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Interleukin-2 (IL-2) is a T-cell-derived polypeptide hormone of 133 amino acids which exerts its growth-promoting activity via a surface receptor1. Originally, IL-2 was believed to be a unique growth factor for activated T cells2; more recent studies, however, have demonstrated that certain B-cell tumours3 as well as normal activated B lymphocytes4–6 express a surface molecule which is recognized by monoclonal antibodies directed against the IL-2 receptor. Furthermore, we7 and others6 have shown recently that activated B cells proliferate in response to either immunoaffinity-purified8 or recombinant9 IL-2. These controversial findings prompted us to undertake a detailed quantitative comparison of IL-2 receptor expression on activated B and T cells. We show here, using biosynthetically labelled IL-2 (3H-IL-2) and anti-IL-2 receptor antibody (3H-PC61) that activated B and T cells express both high-affinity (apparent dissociation constant, Kd ∼ 20 pM) and low-affinity (Kd ∼1,000 pM) IL-2 receptors. Binding of IL-2 to both classes of receptor is inhibited by the monoclonal anti-IL-2 receptor antibody PC61. B blasts express half as many total IL-2 binding sites or PC61 binding sites as T blasts, and the ratio of the number of low- to high-affinity receptors for each cell type is ∼10:1. Immunoprecipitation analysis of surface-labelled blasts indicates that B and T cells have IL-2 receptors of similar relative molecular mass. Taken together, these data suggest strongly that IL-2 can act as a growth hormone for both B and T lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, K. A. A. Rev. Immun. 2, 319–333 (1984).

    Article  CAS  Google Scholar 

  2. Robb, R. J., Munck, A. & Smith, K. A. J. exp. Med. 154, 1455–1464 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Korsmeyer, S. J. et al. Proc. natn. Acad. Sci. U.S.A. 80, 4522–4526 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Malek, T. R., Robb, R. J. & Shevach, E. M. Proc. natn. Acad. Sci. U.S.A. 80, 5694–5698 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Osawa, H. & Diamantstein, T. J. Immun. 132, 2445–2450 (1984).

    CAS  PubMed  Google Scholar 

  6. Tsudo, M. et al. J. exp. Med. 160, 612–617 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Zubler, R. H. et al. J. exp. Med. 160, 1170–1183 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, K. A., Favata, M. F. & Oroszlan, S. J. Immun. 131, 1808–1815 (1983).

    CAS  PubMed  Google Scholar 

  9. Devos, R. et al. Nucleic Acids Res. 11, 4307–4323 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ceredig, R. et al. Nature 314, 98–100 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Robb, R. J., Greene, W. C. & Rusk, C. M. J. exp. Med. 160, 1126–1146 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. King, A. C. & Cuatrecasas, P. J. biol. Chem. 257, 3053–3060 (1982).

    CAS  PubMed  Google Scholar 

  13. Rees, A. R. et al. EMBO J. 3, 1843–1847 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knutson, V. P. et al. Proc. natn. Acad. Sci. U.S.A. 79, 2822–2826 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Raizada, M. K. & Perdue, J. F. J. biol. Chem. 251, 6445–6455 (1976).

    CAS  PubMed  Google Scholar 

  16. Ortega, G. R. et al. J. Immun. 133, 1970–1975 (1984).

    CAS  PubMed  Google Scholar 

  17. Osawa, H. & Diamantstein, T. J. Immun. 130, 51–55 (1983).

    CAS  PubMed  Google Scholar 

  18. Leonard, W. J. et al. Nature 300, 267–269 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Depper, J. M. et al. J. Immun. 133, 1691–1695 (1984).

    CAS  PubMed  Google Scholar 

  20. Lowenthal, J. W. et al. J. Immun. 134, 931–939 (1985).

    CAS  PubMed  Google Scholar 

  21. Nabholz, M. et al. Immun. Rev. 51, 125–156 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Munson, P. J. & Rodbard, D. Analyt. Biochem. 107, 220–239 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. MacDonald, H. R. & Zaech, P. Cytometry 3, 55–58 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Hubbard, A. L. & Cohn, Z. A. J. Cell Biol. 64, 438–460 (1975).

    Article  CAS  PubMed  Google Scholar 

  25. Luescher, B. et al. Molec. Immun. 21, 329–336 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Bordier, C. J. biol. Chem. 256, 1604–1607 (1981).

    CAS  PubMed  Google Scholar 

  27. Laemmli, U. K. Nature 221, 680–685 (1970).

    Article  ADS  Google Scholar 

  28. Gillis, S. et al. J. Immun. 120, 2027–2032 (1978).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowenthal, J., Zubler, R., Nabholz, M. et al. Similarities between interleukin-2 receptor number and affinity on activated B and T lymphocytes. Nature 315, 669–672 (1985). https://doi.org/10.1038/315669a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315669a0

  • Springer Nature Limited

This article is cited by

Navigation