Skip to main content
Log in

Aggregates of acetylcholinesterase induced by acetylcholine receptor-aggregating factor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Basal lamina-rich extracts of Torpedo californica electric organ contain a factor that causes acetylcholine receptors (AChRs) on cultured myotubes to aggregate into patches1–3. Our previous studies have indicated that the active component of these extracts is similar to the molecules in the basal lamina which direct the aggregation of AChRs in the muscle fibre plasma membrane at regenerating neuromuscular junctions in vivo2,4,5. Because it can be obtained in large amounts and assayed in controlled conditions in cell culture, the AChR-aggregating factor from electric organ may be especially useful for examining in detail how the postsynaptic apparatus of regenerating muscle is assembled. Here we demonstrate that the electric organ factor causes not only the formation of AChR aggregates on cultured myotubes, but also the formation of patches of acetylcholinesterase (AChE). This finding, together with the observation that basal lamina directs the formation of both AChR and AChE aggregates at regenerating neuromuscular junctions in vivo6, leads us to hypothesize that a single component of the synaptic basal lamina causes the formation of both these synaptic specializations on regenerating myofibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubin, L. L. & McMahan, U. J. in Disorders of the Motor Unit (ed. Schotland, D. L.) 187–196 (Wiley, New York, 1982).

    Google Scholar 

  2. Nitkin, R. M., Wallace, B. G., Spira, M. E., Godfrey, E. W. & McMahan, U. J. Cold Spring Harb. Symp. quant. Biol. 48, 653–665 (1983).

    Article  CAS  Google Scholar 

  3. Godfrey, E. W., Nitkin, R. M., Wallace, B. G., Rubin, L. L. & McMahan, U. J. J. Cell Biol. 99, 615–627 (1984).

    Article  CAS  Google Scholar 

  4. Burden, S. J., Sargent, P. B. & McMahan, U. J. J. Cell Biol. 82, 412–425 (1979).

    Article  CAS  Google Scholar 

  5. McMahan, U. J. & Slater, C. R. J. Cell Biol. 98, 1453–1473 (1984).

    Article  CAS  Google Scholar 

  6. Anglister, L. & McMahan, U. J. Soc. Neurosci. Abstr. 10, 281 (1984).

    Google Scholar 

  7. Karnovsky, M. J. J. Cell Biol. 23, 217–232 (1964).

    Article  CAS  Google Scholar 

  8. Kordas, M., Brzin, M. & Majcen, Z. Neuropharmacology 14, 791–800 (1975).

    Article  CAS  Google Scholar 

  9. Rotundo, R. L. J. biol. Chem. 21, 13186–13194 (1984).

    Google Scholar 

  10. Fallon, J. R., Nitkin, R. M., Reist, N. E., Wallace, B. G. & McMahan, U. J. Nature 315, this issue.

  11. Anderson, M. J. & Cohen, M. W. J. Physiol., Lond. 268, 751–773 (1977).

    Google Scholar 

  12. Rubin, L. L., Schuetze, S. M. & Fischbach, G. D. Devl Biol. 69, 46–58 (1979).

    Article  CAS  Google Scholar 

  13. Ziskind-Conhaim, L., Geffen, I. & Hall, Z. W. J. Neurosci. 4, 2346–2349 (1984).

    Article  CAS  Google Scholar 

  14. Rubin, L. L., Schuetze, S. M., Weill, C. L. & Fischbach, G. D. Nature 283, 264–267 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Lømo, T. & Slater, C. R. J. Physiol., Lond. 303, 173–189 (1980).

    Article  Google Scholar 

  16. Weinberg, C. B. & Hall, Z. W. Devl Biol. 68, 631–635 (1979).

    Article  CAS  Google Scholar 

  17. Christian, C. M. et al. Proc. natn. Acad. Sci. U.S.A. 75, 4011–4105 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Bauer, H. C. et al. Brain Res. 209, 395–404 (1981).

    Article  CAS  Google Scholar 

  19. Kalcheim, C., Vogel, Z. & Duksin, D. Proc. natn. Acad. Sci. U.S.A. 79, 3077–3081 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Podleski, T. R. et al. Proc. natn. Acad. Sci. U.S.A. 75, 2035–2039 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Jessell, T. M., Siegel, R. E. & Fischbach, G. D. Proc. natn. Acad. Sci. U.S.A. 76, 5397–5401 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Markelonis, G. J., Oh, T. H., Eldefrawi, M. E. & Guth, L. Devl Biol. 89, 353–361 (1982).

    Article  CAS  Google Scholar 

  23. Salpeter, M. M., Spanton, S., Holley, K. & Podleski, T. R. J. Cell Biol. 93, 417–425 (1982).

    Article  CAS  Google Scholar 

  24. Connolly, J. A., St John, P. A. & Fischbach, G. D. J. Neurosci. 2, 1207–1213 (1982).

    Article  CAS  Google Scholar 

  25. Sanes, J. R., Feldman, D. H., Cheney, J. M. & Lawrence, J. C. Jr J. Neurosci. 4, 464–473 (1984).

    Article  CAS  Google Scholar 

  26. Ellman, G. L., Courtney, K. D., Andres, V. & Featherstone, R. M. Biochem. Pharmac. 7, 88–95 (1961).

    Article  CAS  Google Scholar 

  27. Ravdin, P. & Axelrod, D. Analyt. Biochem. 80, 585–592 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, B., Nitkin, R., Reist, N. et al. Aggregates of acetylcholinesterase induced by acetylcholine receptor-aggregating factor. Nature 315, 574–577 (1985). https://doi.org/10.1038/315574a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315574a0

  • Springer Nature Limited

This article is cited by

Navigation