Skip to main content
Log in

A role for branchpoints in splicing in vivo

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The nucleotides immediately surrounding intron/exon junctions of genes transcribed by RNA polymerase B can be derived from ‘consensus’ sequences for donor and acceptor splice sites by only a few base changes1–3. Studies in vivo have underlined the importance of these junction nucleotides for splicing4–7. In higher eukaryotes, no evidence has been found for specific internal intron sequences involved in splicing8–10. However, the recent discovery that, in vitro, introns are excised in a lariat form where the 5′ end of the intron is joined via a 2′-5′-phosphodiester linkage to an A residue (branchpoint acceptor) close to the 3′ end of the intron, suggests that internal intron sequences may nonetheless be important for splicing11–13. Indeed, in yeast nuclear genes, the internal sequence 5′-TACTAAC-3′ (or close homologue) is essential for splicing in vivo14,15. A proposed consensus sequence for branchpoints in mammalian introns is 5′-CT(A/G)A(C/T)-3′ (refs 11, 16, 17). This sequence resembles the essential yeast internal sequence. Are branchpoints involved in the splicing of introns of higher eukaryotes in vivo? We show here that a branchpoint sequence from a human globin gene (5′-CTGACTCTCTCTG-3′)11 greatly enhances the efficiency of splicing of a ‘synthetic’ intron in HeLa cells. A mutated branchpoint sequence, 5′-CTCCTCTCTCTG-3′, in which the branchpoint acceptor nucleotide A has been deleted and the neighbouring purine G mutated to a C, does not exhibit this enhancing capability. We conclude that branchpoints have an important function in the splicing process in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 75, 4852–4857 (1978).

    Article  ADS  Google Scholar 

  2. Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

  3. Mount, S. Nucleic Acids Res. 10, 465–473 (1982).

    Article  Google Scholar 

  4. Wieringa, B., Meyer, F., Reiser, J. & Weissmann, C. Nature 301, 38–43 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Treisman, R., Orkin, S. H. & Maniatis, T. Nature 302, 591–596 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Mount, S. & Steitz, J. Nature 303, 380–381 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Rautmann, G., Matthes, H. W. D., Gait, M. J. & Breathnach, R. EMBO J. 3, 2021–2028 (1984).

    Article  CAS  Google Scholar 

  8. Volkaert, G., Feunteun, J., Crawford, L. V., Berg, P. & Fiers, W. J. J. Virol 30, 677–682 (1979).

    Google Scholar 

  9. Wieringa, B., Hofer, E. & Weissmann, C. Cell 37, 915–925 (1984).

    Article  CAS  Google Scholar 

  10. Dierks, P. et al. ICN UCLA Symp. molec. cell. Biol. 33, 347–366 (1981).

    Google Scholar 

  11. Ruskin, B., Krainer, A. R., Maniatis, T. & Green, M. R. Cell 38, 317–331 (1984).

    Article  CAS  Google Scholar 

  12. Padgett, R. A., Konarski, M. M., Grabowski, P. J., Hardy, S. F. & Sharp, P. A. Science 225, 898–903 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Weissmann, C. Nature 311, 103–104 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Pikielny, C. W., Teem, J. L. & Rosbash, M. Cell 34, 395–403 (1984).

    Article  Google Scholar 

  15. Langford, C. J. & Gallwitz, D. Cell 33, 519–527 (1983).

    Article  CAS  Google Scholar 

  16. Keller, E. B. & Noon, W. A. Proc. natn. Acad. Sci. U.S.A. 81, 7417–7420 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Zeitlin, S. & Efstratiadis, A. Cell 39, 589–602 (1984).

    Article  CAS  Google Scholar 

  18. Matthes, H. W. D. et al. EMBO J. 3, 801–805 (1984).

    Article  CAS  Google Scholar 

  19. Tooze, J. (ed.) DNA Tumor Viruses 2nd edn (Cold Spring Harbor Laboratory, New York, 1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rautmann, G., Breathnach, R. A role for branchpoints in splicing in vivo. Nature 315, 430–432 (1985). https://doi.org/10.1038/315430a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315430a0

  • Springer Nature Limited

This article is cited by

Navigation