Skip to main content

Advertisement

Log in

Sequence of reovirus haemagglutinin predicts a coiled-coil structure

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The use of modern techniques has led to new insights into the molecular mechanisms of viral pathogenesis1. Although the infectious process is quite complex, it is clear that one critical stage, the interaction of viral attachment proteins with cell-surface receptors, often has a major role in determining the pattern of infection2. The mammalian reoviruses have served as useful models for understanding the molecular basis of viral pathogenesis2. The mammalian reovirus haemagglutinin (σ1 protein), which is an outer capsid protein, has been shown to be a major factor in determining virus–host cell interactions2. To further our understanding of the structure and function of the haemagglutinin, we have cloned a complementary DNA copy of the reovirus type 3 S1 double-stranded RNA gene which encodes the virus haemagglutinin and have sequenced the DNA complementary to the S1 gene. Analysis of the predicted amino-acid sequence of the virus haemagglutinin has allowed us to determine that the amino-terminal portion contains an α-helical coiled-coil structure and that the carboxy-terminal portion contains the receptor-interacting domains. Using this information, we propose here a model of how the reovirus haemagglutinin is attached to the virus particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, H., Skehel, J. J. & Turner, J. J. (eds) The Molecular Basis of Microbial Pathogenicity, 1–355 (Verlag-Chemie, Basel, 1980).

  2. Fields, B. N. & Greene, M. I. Nature 300, 19–23 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Both, G. W., Lavi, S. & Shatkin, A. J. Cell 4, 173–180 (1975).

    Article  CAS  Google Scholar 

  4. Smith, R. E., Zweerink, H. J. & Joklik, W. K. Virology 39, 791–810 (1969).

    Article  CAS  Google Scholar 

  5. Lee, P. W. K. Double Stranded RNA Viruses (eds Compans, R. H. & Bishop, D. H. L.) 193–206 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  6. Kozak, M. J. molec. Biol. 156, 807–820 (1982).

    Article  CAS  Google Scholar 

  7. Cenatiempo, Y. et al. Proc. natn. Acad. Sci. U.S.A. 81, 1084–1088 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Ernst, H. & Shatkin, A. J. Proc. natn. Acad. U.S.A. 82 48–52.

  9. Crick, F. H. C. Acta crystallogr. 6, 689–697 (1953).

    Article  CAS  Google Scholar 

  10. McLachlan, A. D. & Stewart, M. J. molec. Biol. 98, 293–304 (1975).

    Article  CAS  Google Scholar 

  11. Garnier, J., Osguthorpe, D. J. & Robson, B. J. molec. Biol. 120, 97–120 (1978).

    Article  CAS  Google Scholar 

  12. Ward, C. W. & Dopheide, T. A. Aust. J. biol. Sci. 33, 441–447 (1980).

    Article  CAS  Google Scholar 

  13. Wilson, I. A., Skehel, J. J. & Wiley, D. C. Nature 289, 366–373 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Joklik, W. K. Reoviridae (ed. Joklik, W. K.) 9–70 (Plenum, New York, 1983).

    Google Scholar 

  15. Spriggs, D. R. & Fields, B. N. Nature 297, 68–70 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Spriggs, D. R., Bronson, R. T. & Fields, B. N. Science 220, 505–507 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Goad, W. B. & Kanehisa, M. Nucleic Acids Res. 10, 247–263 (1982).

    Article  CAS  Google Scholar 

  18. Harington, W. F. & Rodgers, M. E. A. Rev. Biochem. 53, 35–73 (1984).

    Article  Google Scholar 

  19. McPhillips, T. H. & Ramig, R. F. Virology 135, 428–439 (1984).

    Article  CAS  Google Scholar 

  20. Hayes, E. C., Lee, P. W. K., Miller, S. & Joklik, W. K. Virology 108, 147–155 (1981).

    Article  CAS  Google Scholar 

  21. Luftig, R. B., Kilham, S., Hay, A. J., Zweerink, H. J. & Joklik, W. K. Virology 48, 170–181 (1972).

    Article  CAS  Google Scholar 

  22. Dayhoff, M. O. (ed.) Atlas of Protein Sequence and Structure Vol. 5 (National Biomedical Research Foundation, Washington, DC, 1978).

  23. Sippel, A. E. Eur. J. Biochem. 37, 31–40 (1973).

    Article  CAS  Google Scholar 

  24. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  25. Deng, G. & Wu, R. Nucleic Acids Res. 9, 4173–4188 (1981).

    Article  CAS  Google Scholar 

  26. England, T. E., Bruce, A. G. & Uhlenbeck, O. C. Meth. Enzym. 65, 65–74 (1980).

    Article  CAS  Google Scholar 

  27. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  28. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Sarkar, G. et al. J. Virol. (in the press).

  30. Nagata, L., Masri, S. A., Mah, D. C. W. & Lee, P. W. K. Nucleic Acids Res. 12, 8699–8710 (1984).

    Article  CAS  Google Scholar 

  31. Cashdollar, L. W., Chmelo, R. A., Wiener, J. R. & Joklik, W. K. Proc. natn. Acad. Sci. U.S.A. 82, 24–28 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassel-Duby, R., Jayasuriya, A., Chatterjee, D. et al. Sequence of reovirus haemagglutinin predicts a coiled-coil structure. Nature 315, 421–423 (1985). https://doi.org/10.1038/315421a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315421a0

  • Springer Nature Limited

This article is cited by

Navigation