Skip to main content
Log in

Gene rearrangement in cells with natural killer activity and expression of the β-chain of the T-cell antigen receptor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The mammalian host defence system can be divided broadly into adaptive and non-adaptive immunity. Adaptive immunity is acquired and is mediated by B and T lymphocytes. Non-adaptive immunity is mediated in part by a small subclass of heterogeneous peripheral blood mononuclear cells. This population, termed null cells, consists of haematopoietic precursors and cells mediating natural killer (NK) activity and antibody-dependent cellular cytotoxicity (ADCC). NK cells are a class of bon-adherent, non-phagocytic, rapidly cytotoxic lymphocytes which can efficiently lyse a wide variety of tumour cells1, virally infected cells2 and immature cell types of normal origin3. Despite the broad range of targets, only a limited number of specificities are thought to be involved in target-cell recognition4–6. Morphologically, NK cells are large granular lymphocytes7,8, but they have been shown to exhibit cell-surface markers characteristic of both T cells9–11 and monocytes12, raising doubt over their lineage. The recent cloning of the β-chain of the T-cell antigen receptor13,14 has now allowed us to investigate whether some NK celle are T-cell-related. We have examined rearrangement and expression of the β-chain of the T-cell receptor in cloned murine NK cell lines and fresh murine NK cell populations, and our results support the hypothesis that a subpopulation of NK cells is related to T cells and provide a basis for examining whether some NK activity is mediated by a small number of T-cell receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiessling, R., Klein, E. & Wigzell, H. Eur. J. Immun. 5, 117–121 (1975).

    Article  CAS  Google Scholar 

  2. Santoli, D., Trinchieri, G. & Leif, F. S. J. Immun. 121, 526–531 (1978).

    CAS  PubMed  Google Scholar 

  3. Hansson, M., Kiessling, R., Anderson, B., Karre, K. & Roder, J. Nature 278, 174–176 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Phillips, W. H., Ortaldo, J. R. & Herberman, R. B. J. Immun. 125, 2322–2327 (1980).

    CAS  PubMed  Google Scholar 

  5. Allavena, P. & Ortaldo, J. R. J. Immun. 132, 2363–2369 (1984).

    CAS  PubMed  Google Scholar 

  6. Roder, J. C., Ahrlund-Richter, L. & Jondal, M. J. exp. Med. 150, 471–481 (1979).

    Article  CAS  Google Scholar 

  7. Timonen, T., Ortaldo, J. R. & Herberman, R. B. J. exp. Med. 153, 569–581 (1981).

    Article  CAS  Google Scholar 

  8. Timonen, T., Saksela, E., Ranki, A. & Hayry, P. Cell. Immun. 48, 133–148 (1979).

    Article  CAS  Google Scholar 

  9. Perussia, B., Fanning, V. & Trinchieri, G. J. Immun. 131, 223–231 (1983).

    CAS  PubMed  Google Scholar 

  10. Herberman, R. B., Nunn, M. E. & Holden, H. T. J. Immun. 121, 304–309 (1978).

    CAS  Google Scholar 

  11. West, W. H., Cannon, G. B., Kaye, H. D., Vonnard, G. D. & Herberman, R. B. J. Immun. 118, 355–361 (1977).

    CAS  Google Scholar 

  12. Zarling, J. M. & Kung, P. C. Nature 288, 394–396 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Yanagi, Y. et al. Nature 308, 145–149 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Hedrick, S. M., Nielson, E. A., Kavaler, J., Cohen, D. I. & Davis, M. M. Nature 308, 153–158 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Acha-Orbea, H., Groscurth, P., Lang, R., Stiz, L. & Hengartner, H. J. Immun. 130, 2952–2957 (1983).

    CAS  PubMed  Google Scholar 

  16. Warner, J. F. & Dennert, G. Nature 300, 31–34 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Dennert, G., Yogeeswaran, G. & Yamagata, S. J. exp. Med. 153, 545–556 (1981).

    Article  CAS  Google Scholar 

  18. Malissen, M. et al. Cell 37, 1101–1110 (1984).

    Article  CAS  Google Scholar 

  19. Thomas, P. C. Proc. natn. Acad. Aci. U.S.A. 77, 5201–5205 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Yoshikai, Y. et al. Nature 312, 521–524 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Clark, S. et al. Nature 311, 387–389 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Siu, G. et al. Nature 311, 344–350 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Hercend, T. et al. J. exp. Med. 158, 1547–1560 (1983).

    Article  CAS  Google Scholar 

  24. Blin, N. & Stafford, D. W. Nucleic Acids Res. 3, 2303–2308 (1976).

    Article  CAS  Google Scholar 

  25. Rigby, P., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

  26. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  27. Caccia, N. et al. Cell 37, 1091–1099 (1984).

    Article  CAS  Google Scholar 

  28. Beaumont, T. J. et al. Scand. J. Immun. 16, 123–133 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanagi, Y., Caccia, N., Kronenberg, M. et al. Gene rearrangement in cells with natural killer activity and expression of the β-chain of the T-cell antigen receptor. Nature 314, 631–633 (1985). https://doi.org/10.1038/314631a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314631a0

  • Springer Nature Limited

This article is cited by

Navigation