Skip to main content

Advertisement

Log in

Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Although promoter regions for many plant nuclear genes have been sequenced, identification of the active promoter sequence has been carried out only for the octopine synthase promoter1. That analysis was of callus tissue and made use of an enzyme assay. We have analysed the effects of 5′ deletions in a plant viral promoter in tobacco callus as well as in regenerated plants, includ ing different plant tissues. We assayed the RNA transcription product which allows a more direct assessment of deletion effects. The cauliflower mosaic virus (CaMV) 35S promoter provides a model plant nuclear promoter system, as its double-strand DNA genome is transcribed by host nuclear RNA polymerase II from a CaMV minichromosome2. Sequences extending to −46 were sufficient for accurate transcription initiation whereas the region between −46 and −105 increased greatly the level of transcription. The 35S promoter showed no tissue-specificity of expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koncz, C. et al. EMBO J. 2, 1597–1603 (1983).

    Article  CAS  Google Scholar 

  2. Olszewski, G., Hagen, G. & Guilfoyle, T. J. Cell 29, 395–402 (1982).

    Article  CAS  Google Scholar 

  3. Guilley, H., Dudley, R. K., Jonard, G., Balazs, E. & Richards, K. E. Cell 30, 763–773 (1982).

    Article  CAS  Google Scholar 

  4. Pavlakis, G. N. & Hamer, D. Rec. Prog. Horm. Res. 39, 353–385 (1983).

    CAS  PubMed  Google Scholar 

  5. Fraley, R. T. et al. Proc. natn. Acad. Sci. U.S.A. 80, 4803–4807 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. Proc. natn. Acad. Sci. U.S.A. 77, 7347–7351 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Marton, J., Wullems, G. S., Molendijk, L. & Schilperoort, R. A. Nature 277, 129–131 (1979).

    Article  ADS  Google Scholar 

  8. Horsch, R. B. et al. Science 223, 496–498 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Suissa, M. Analyt. Biochem. 133, 511–514 (1983).

    Article  CAS  Google Scholar 

  10. Gluzman, Y. & Shenk, T. (eds) Current Communications in Molecular Biology (Cold Spring Harbor, New York, 1983).

  11. Sakonju, S., Bogenhagen, D. F. & Brown, D. D. Cell 19, 13–26 (1980).

    Article  CAS  Google Scholar 

  12. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Guo, L.-H. & Wu, R. Meth. Enzym. 100, 60–96 (1983).

    Article  CAS  Google Scholar 

  14. Franck, A., Guilley, H., Jonard, G., Richards, K., Hirth, L. Cell 21, 285–294 (1980).

    Article  CAS  Google Scholar 

  15. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  16. Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 133, 237–251 (1977).

    Article  Google Scholar 

  17. Thomashow, M. F., Nutter, R. C., Montoya, A. L., Gordon, M. P. & Nester, E. W. Cell 19, 1729–1739 (1980).

    Article  Google Scholar 

  18. Glisen, V., Crkvenjakov, R. & Byus, C. Biochemistry 13, 2633–2637 (1974).

    Article  Google Scholar 

  19. Broglie, R., Bellemare, G., Bartlett, S. G., Chua, N.-H. & Cashmore, A. R. Proc. natn. Acad. Sci. U.S.A. 78, 7304–7308 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Thomas, P. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  22. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odell, J., Nagy, F. & Chua, NH. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810–812 (1985). https://doi.org/10.1038/313810a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313810a0

  • Springer Nature Limited

This article is cited by

Navigation