Skip to main content

Advertisement

Log in

Two contrary modes of chemolithotrophy in the same archaebacterium

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Sulphur-dependent archaebacteria, which are found around nearly boiling continental solfataric springs and mud holes, can be assigned to two distinct branches: the aerobic, sulphur-oxidizing Sulfolobales1–4 and the strictly anaerobic sulphur-reducing Thermoproteales5–7. Here, we report the isolation of a group of extremely thermophilic solfataric archaebacteria that are able to grow either strictly anaerobically by reduction, or fully aerobically by oxidation of molecular sulphur, depending on the oxygen supply. We have also established that the ability to grow in these two ways is shared by Sulfolobus brierleyi, a well-known less thermophilic sulphur-oxidizing archaebacterium capable of ore-leaching8. The phenomenon may be dependent on a fundamental switch in genome expression. These organisms might represent the primitive forerunners of sulphur-oxidizing archaebacteria, meeting their energy requirements either by oxidation or by reduction of the same element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brock, T. D., Brock, K. M., Belley, R. T. & Weiss, R. L. Archs Microbiol. 84, 54–68 (1972).

    CAS  Google Scholar 

  2. Brierley, C. L. & Brierley, J. A. Can. J. Microbiol. 19, 183–188 (1973).

    Article  CAS  Google Scholar 

  3. Zillig, W. et al. Archs Microbiol. 125, 259–269 (1980).

    Article  CAS  Google Scholar 

  4. Woese, C. R., Gupta, R., Hahn, C. M., Zillig, W. & Tu, J. System appl. Microbiol. 5, 97–105 (1984).

    Article  CAS  Google Scholar 

  5. Zillig, W. et al. Zbl. Bakt. Hyg., I. Abt. Orig. C2, 205–227 (1981).

    CAS  Google Scholar 

  6. Stetter, K. O. Nature 300, 258–260 (1982).

    Article  ADS  Google Scholar 

  7. Fischer, F., Zillig, W., Stetter, K. O. & Schreiber, G. Nature 301, 511–513 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Brierley, C. L. CRC crit. Rev. Microbiol. 6, 207–262 (1978).

    Article  CAS  Google Scholar 

  9. De Rosa, M., Gambacorta, A. & Bu'Lock, J. D. J. gen. Microbiol. 86, 156–164 (1975).

    Article  CAS  Google Scholar 

  10. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. Microbiol. Rev. 43, 260–296 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen, M. B. Archs Microbiol. 32, 270–277 (1959).

    CAS  Google Scholar 

  12. Wildgruber, G. et al. Archs Microbiol. 132, 31–36 (1982).

    Article  CAS  Google Scholar 

  13. Marmur, J. & Doty, P. J. molec. Biol. 5, 109–118 (1962).

    Article  CAS  Google Scholar 

  14. Steigerwaldt, A. G., Fanning, G. R., Sise-Ashbury, M. A. & Brenner, B. J. Can. J. Microbiol. 22, 121–137 (1976).

    Article  Google Scholar 

  15. Kessel, M. & Klink, F. Nature 287, 250–251 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Williams, W. J. Handbook of Anion Determination, 570–572 (Butterworths, London, 1979).

    Google Scholar 

  17. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  18. Burton, K. Biochem. J. 62, 315–322 (1956).

    Article  CAS  Google Scholar 

  19. Gillespie, S. & Gillespie, D. Biochem. J. 125, 481–487 (1971).

    Article  CAS  Google Scholar 

  20. Birnstiel, M. L., Sells, B. H. & Purdom, I. F. J. molec. Biol. 63, 21–39 (1972).

    Article  CAS  Google Scholar 

  21. Kelly, R. B., CozzareIli, N. R., Deutscher, M. P., Lehman, J. R. & Kornberg, A. J. biol. Chem. 245, 39–45 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segerer, A., Stetter, K. & Klink, F. Two contrary modes of chemolithotrophy in the same archaebacterium. Nature 313, 787–789 (1985). https://doi.org/10.1038/313787a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313787a0

  • Springer Nature Limited

This article is cited by

Navigation