Skip to main content
Log in

Megaregolith thickness, heat flow, and the bulk composition of the Moon

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The Moon's bulk composition is a major constraint on its origin and evolution. Bulk density alone shows that the Moon is depleted in metallic FeNi relative to the Earth or to chondrites with earthlike MgO/FeO ratios (such as H-group chondrites). Depletions of minor-trace volatile elements are also obvious from geochemical data. The simplest assumption would be that the Moon is not much different in terms of nonsiderophile, nonvolatile elements from the silicate portions of the Earth or H chondrites. Lunar heat flow data1 have been interpreted to imply that the Moon's uranium content is about 46 ng g−1, about twice that of the Earth's mantle, and three times that of H-chondrite silicates. As it is difficult to envisage any process preceding the formation of planets that would fractionate refractory lithophiles such as uranium from major lithophiles such as Si, disparity in the U/Si ratio implies disparity in provenance or origin. Based on a new model that takes into account the considerable, but variable, thickness of porous, low-conductivity megaregolith, the thickness of the lunar lithosphere, and the nonrepresentative composition of the crust at one of the two sites where heat flow was measured, we estimate here that the Moon's uranium content is roughly 19 ng g−1. The Moon's bulk composition appears far less exotic than generally assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langseth, M. G., Jr., Keihm, S. J. & Peters, K. Proc. 7th Lunar Sci. Conf. 3143–3171 (1976).

  2. Warren, P. H. in Workshop on Pristine Highlands Rocks and the Early History of the Moon (eds Longhi, J. & Ryder, G.)(Lunar and Planetary Institute Technical Rep. 83-02, 75-79, 1983); Geochim. cosmochim. Acta 47, 1559–1571 (1983).

    Google Scholar 

  3. Taylor, S. R. Planetary Science: A Lunar Perspective (Lunar and Planetary Institute, Houston, 1982).

    Google Scholar 

  4. Morgan, J. W., Hertogen, J. & Anders, E. Moon and Planets 18, 465–478 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Keihm, S. J. & Langseth, M. G. Proc. 8th Lunar Sci. Conf. 499–514 (1977).

  6. Conel, J. E. & Morton, J. B. The Moon 14, 263–289 (1975).

    Article  ADS  Google Scholar 

  7. Schubert, G., Stevenson, D. & Cassen, P. J. geophys. Res. 85, 2531–2538 (1980).

    Article  ADS  Google Scholar 

  8. Aggarwal, H. R. & Oberbeck, V. R. Proc. 10th Lunar planet. Sci. Conf. 2689–2705 (1979).

  9. Golombeck, M. P. J. geophys. Res. 84, 4657–4666 (1979).

    Article  ADS  Google Scholar 

  10. Thompson, T. W. et al. Moon Planets 21, 319–342 (1979).

    Article  ADS  Google Scholar 

  11. Head, J. W. Proc. 7th Lunar Sci. Conf. 2913–2929 (1976).

  12. Horz, F. Proc. 9th Lunar planet. Sci. Conf. 3311–3331 (1978).

  13. DeHon, R. A. & Waskom, J. D. Proc. 7th Lunar Sci. Conf. 2729–2746 (1976).

  14. Peeples, W. J. et al. J. geophys. Res. 83, 3459–3468 (1978).

    Article  ADS  Google Scholar 

  15. Head, J. W. & Settle, M. Imbrium Consortium Vol. 1 (ed. Wood, J. A.) 5–14 (Smithsonian Astrophysics Observatory, Massachusetts, 1976).

    Google Scholar 

  16. DeHon, R. A. Proc. 10th Lunar planet. Sci. Conf. 2935–2955 (1979).

  17. Talwani, M., Thompson, G., Dent, B., Kahle, H.-G. & Buck, S. Apollo 17 Preliminary Science Rep. (ed. Parker, R.A.) 13.1–13.13 (NASA, Washington, 1973).

  18. Horai, K. & Winkler, J. L. Jr Proc. 7th Lunar Sci. Conf. 3183–3204 (1976).

  19. Apollo Lunar Sample Information Catalogs (Lunar Sample Curator, NASA Johnson Space Center, Houston).

  20. Horai, K. J. geophys. Res. 76, 1278–1308 (1971).

    Article  ADS  CAS  Google Scholar 

  21. Hood, L. L., Herbert, F. & Sonett, C. P. J. geophys. Res. 87, A109–A116 (1982).

    Article  Google Scholar 

  22. Ringwood, A. E. Origin of the Earth and Moon (Springer, New York, 1979).

    Book  Google Scholar 

  23. Metzger, A. E., Haines, E. L., Parker, R. E. & Radocinski, R. G. Proc. 8th Lunar Sci. Conf. 949–999 (1977).

  24. Surkov, Yu. A. Proc. 12th Lunar planet. Sci. Conf. 1377–1386 (1981).

  25. Warren, P. H. & Wasson, J. T. Rev. Geophys. Space Phys. 17, 73–88 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Binder, A. B. The Moon 14, 237–245 (1975).

    Article  ADS  Google Scholar 

  27. Bills, B. G. & Ferarri, A. J. J. geophys. Res. 82, 1306–1314 (1977).

    Article  ADS  Google Scholar 

  28. Warren, P. H. et al. J. geophys. Res. 88, B151–B164 (1983).

    Article  Google Scholar 

  29. Wanke, H. et al. Proc. 5th Lunar Sci. Conf. 1307–1335 (1974).

  30. Anderson, D. L. Earth planet. Sci. Lett. 18, 301–316 (1973).

    Article  ADS  CAS  Google Scholar 

  31. Mason, B US geol. Surv. Prof. Pap. 440 -B, Part 1 (1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, K., Warren, P. Megaregolith thickness, heat flow, and the bulk composition of the Moon. Nature 313, 121–124 (1985). https://doi.org/10.1038/313121a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313121a0

  • Springer Nature Limited

This article is cited by

Navigation