Skip to main content
Log in

New model of Saturn's ionosphere with an influx of water from the rings

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Current theoretical models of Saturn's ionosphere are similar to those of Jupiter's because of the gross similarity of their upper atmospheres. In the case of Jupiter, the theoretical models can be fitted reasonably well to ionospheric electron density profiles1,2 obtained from the Pioneer and Voyager radio occultation experiments3–5. In contrast, the theoretical models of Saturn's ionosphere are inconsistent with both the ionospheric electron density profiles6,7 obtained from the Pioneer and Voyager occultation observations8–10 and the large diurnal variation of maximum ionospheric electron density deduced from studies of Saturn lightning discharges11,12. We propose a radically different model of Saturn's ionosphere in which water plays a major role as a minor constituent present by downward diffusion from an external source. Our model Saturn ionosphere is a classical ‘F2’ type layer resulting from the photodissociative production of H+ from H2 and rapid chemical loss by a series of charge exchange reactions with water. A planet-wide influx of ∼4 × 107 molecules cm−2 s−1 of water from the rings is consistent with the observed ionospheric electron densities. An enhanced influx of water occurs at latitudes (−38°, +44°) connected magnetically to the inner edge of Saturn's B ring12 where an electromagnetic erosion process13 takes place. Present-day influx at these latitudes may be as large as ∼2 × 109 molecules cm−2 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atreya, S. K. & Donahue, T. M. in Jupiter (ed. Gehrels, T.) 304–318 (University of Arizona Press, Tucson, 1976).

    Google Scholar 

  2. Strobel, D. F. & Atreya, S. K. in Physics of the Jovian Magnetosphere (ed. Dessler, A. J.) 51–66 (Cambridge University Press, Cambridge, Massachusetts, 1983.

    Book  Google Scholar 

  3. Fjeldbo, G., Kliore, A., Seidel, B., Sweetnam, D. & Cain, D. Astron. Astrophys. 39, 91–96 (1975).

    ADS  CAS  Google Scholar 

  4. Eshleman, V. R. et al. Science 204, 976–978 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Eshleman, V. R. et al. Science 206, 959–962 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Atreya, S. K. & Waite, J. H. Nature 292, 682–683 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Atreya, S. K., Waite, J. H., Donahue, T. M., Nagy, A. F. & McConnell, J. C. in Saturn (ed. Gehrels, T.) 239–279 (University of Arizona Press, Tucson, 1984).

    Google Scholar 

  8. Kliore, A. J. et al. J. geophys. Res. 85, 5857–5870 (1980).

    Article  ADS  Google Scholar 

  9. Tyler, G. L. et al. Science 212, 201–206 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Tyler, G. L. et al. Science 215, 553–558 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Kaiser, M. L., Connerney, J. E. P. & Desch, M. D. Nature 303, 50–53 (1983).

    Article  ADS  Google Scholar 

  12. Kaiser, M. L., Desch, M. D. & Connerney, J. E. P. J. geophys. Res. 89, 2371–2376 (1984).

    Article  ADS  Google Scholar 

  13. Northrop, T. G. & Hill, J. R. J. geophys. Res. 88, 6102–6108 (1983).

    Article  ADS  Google Scholar 

  14. Waite, J. H., Atreya, S. K. & Nagy, A. F. Geophys. Res. Lett. 6, 723–726 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Atreya, S. K. & Donahue, T. M. Icarus 24, 358–362 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Shimizu, M. Proc. 13th Lunar planet. Symp. 709 (1980).

  17. Chen, R. S. Moon Planets 28, 37–41 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Giguere, P. T. & Huebner, W. F. Astrophys. J. 223, 638–654 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Huebner, W. F. & Carpenter, C. W. Los Alamos Scientific Laboratory Report LA-8085-MS (1979).

    Google Scholar 

  20. Bauer, S. J. Physics of Planetary Ionospheres (Springer, New York, 1973).

    Book  Google Scholar 

  21. Rishbeth, H. Rev. Geophys. 6, 33–71, 1968.

    Article  ADS  Google Scholar 

  22. Morfill, G. E., Fechtig, H., Grun, E. & Goertz, C. K. Icarus 55, 439–447 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Carlson, R. W. Nature 283, 461 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Winkelstein, P. et al. Icarus 54, 309–318 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Samuelson, R. E. et al. J. geophys. Res. 88, 8709–8715 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connerney, J., Waite, J. New model of Saturn's ionosphere with an influx of water from the rings. Nature 312, 136–138 (1984). https://doi.org/10.1038/312136a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312136a0

  • Springer Nature Limited

This article is cited by

Navigation