Skip to main content
Log in

Relic interstellar grains in Murchison meteorite

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Isotopic analyses of hydrogen, carbon and nitrogen in meteorites provide important information about the origin and history of these elements both in meteorites and in the Solar System. Here we show that, in the Murchison meteorite, the D/H ratios of hydrogen are unusually high in several separates and in one case up to 30 times the cosmic value of 2 × 10−5. Many phases show high 13C/12C ratios, up to 2.5 times the terrestrial value of 0.011. These 13C-rich and D-rich components of the two chemical elements are not correlated. Also they are heterogeneously distributed, suggesting that different components in the meteorite originated from different astrophysical sites and at different times. The D-rich hydrogen in the meteorite is probably due to molecules formed by ion–molecule reactions in interstellar clouds while the tiny amount of 13C-rich carbon is probably due to nucleosynthesis in red giant stars as suggested by Swart et al.1. Both of these heavy-isotope enriched components survived homogenization in the accumulation and subsequent history of the meteorites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swart, P. K., Grady, M. M., Pillinger, C. T., Lewis, R. S. & Anders, E. Science 220, 406–410 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Yang, J. & Epstein, S. Geochim. cosmochim. Acta 47, 2199–2216 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Watson, W. D. Rev. Mod. Phys. 48, 513–552 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Geiss, J. & Reeves, H. R. Astr. Astrophys. J. 93, 189–199 (1981).

    ADS  CAS  Google Scholar 

  5. Robert, F. & Epstein, S. Geochim. cosmochim. Acta 46, 81–95 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Clayton, R. N. Science 140, 192–193 (1963).

    Article  ADS  CAS  Google Scholar 

  7. Smith, J. W. & Kaplan, I. R. Science 167, 1367–1370 (1970).

    Article  ADS  CAS  Google Scholar 

  8. Kerridge, J. F. Lunar planet. Sci. Conf. 13, 381–382 (1982).

    ADS  Google Scholar 

  9. Yang, J. and Epstein, S. Meteoritics 18, 429–430 (1983).

    Google Scholar 

  10. Langer, W. D., Graedel, T. E., Frerking, M. A. & Armentrout, P. B. Astrophys. J. 277, 581–604 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Lewis, R. S., Anders, E., Wright, I. P., Norris, S. J. & Pillinger, C. T. Nature 305, 767–771 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Alaerts, L., Lewis, R. S. & Anders, E. Geochim. cosmochim. Acta 43, 1399–1415 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Epstein, S. Relic interstellar grains in Murchison meteorite. Nature 311, 544–547 (1984). https://doi.org/10.1038/311544a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311544a0

  • Springer Nature Limited

This article is cited by

Navigation