Skip to main content
Log in

Evolution of the lower continental crust: granulite facies xenoliths from the Eifel, West Germany

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The lower continental crust is a key region to understanding processes of crust–mantle differentiation and subsequent evolution of the crust. The region is metamorphosed into granulite or amphibolite facies1,2. Whereas felsic to mafic granulites with an average intermediate major element composition are typically observed in old exposed lower crustal terranes, mafic compositions are preponderant among granulite facies xenoliths transported by young alkalic basaltic volcanics and kimberlites1. Radiometrie ages for granulite bulk rocks using the Rb–Sr or U–Pb methods are usually interpreted as metamorphic ages. In contrast, Sm–Nd ages obtained on such metamorphics are interpreted to reflect pre-metamorphic events3–7, although a case of severe disturbance of the Sm–Nd isotope system during granulite facies metamorphism has also been reported8. We present here Sm–Nd and Rb–Sr isotope data for a suite of mafic lower crustal xenoliths from the Hercynian belt. Our data suggest that the igneous precursors of these granulites differentiated from depleted mantle ∼1.5 Gyr ago. In most of these granulites this evidence for a mid-Proterozoic age has been obliterated by a young (≺172 Myr) metasomatic overprint by mantle derived fluids or melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kay, R. W. & Kay, S. M. Rev. Geophys. Space Phys. 19, 271–297 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Fountain, D. M. & Salisbury, M. H. Earth planet. Sci. Lett. 56, 263–277 (1981).

    Article  ADS  Google Scholar 

  3. Hamilton, P. J., Evensen, N. M., O'Nions, R. K. & Tarney, J. Nature 277, 25–28 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Jacobsen, S. B. & Wasserburg, G. W. Earth planet. Sci. Lett. 41, 245–253 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Rogers, N. W. & Hawkesworth, C. J. Nature 299, 409–413 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Cliff, R. A., Gray, C. M. & Huhma, H. Contr. Miner. Petrol. 82, 91–98 (1983).

    Article  ADS  CAS  Google Scholar 

  7. McCulloch, M. T., Arculus, R. J., Chappell, B. W. & Ferguson, J. Nature 300, 166–169 (1982).

    Article  ADS  CAS  Google Scholar 

  8. DePaolo, D. J., Manton, W. I., Grew, E. S. & Halpern, M. Nature 298, 614–618 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Okrusch, M., Schröder, B. & Schnütgen, A. Lithos 12, 251–270 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Voll, G. in Plateau Uplift, The Rhenish Shield—A Case History (eds Fuchs, K. et al.) 336–342 (Springer, Berlin, 1983).

    Google Scholar 

  11. Mechie, J., Prodehl, C. & Fuchs, K. in Plateau Uplift, The Rhenish Shield—A Case History (eds Fuchs, K. et al.) 260–275 (Springer, Berlin, 1983).

    Google Scholar 

  12. Stosch, H.-G. & Seck, H. A. Geochim. Cosmochim. Acta 44, 457–470 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Stosch, H.-G., Carlson, R. W. & Lugmair, G. W. Earth planet. Sci. Lett. 47, 263–271 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Heier, K. Phil. Trans. R. Soc. A273, 429–442 (1973).

    Article  ADS  Google Scholar 

  15. Weaver, B. & Tarney, J. Earth planet. Sci. Lett. 51, 279–296 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Newton, R. C., Smith, J. V. & Windley, B. F. Nature 288, 45–50 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Jäger, E. Coll. Int. CNRS, Rennes 243, 227–239 (1974).

    Google Scholar 

  18. Vidal, P., Auvray, B., Charlot, R. & Cogné, J. Precamb. Res. 14, 1–20 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Gebauer, D. & Grünenfelder, M. 5th Int. Isotope Geology Conf., Nikko, Japan, 111–112 (1982).

  20. Taylor, S. R., McLennan, S. M. & McCulloch, M. T. Geochim. cosmochim. Acta 47, 1897–1905 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Miller, R. G. & O'Nions, R. K. EOS 64, 906 (1983).

    Google Scholar 

  22. Windley, B. F. The Evolving Continents (Wiley, London, 1977).

    Google Scholar 

  23. DePaolo, D. J. Nature 291, 193–196 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Patchett, J., Arndt, N. T., Chauvel, C. & Todt, W. Terra Cognita 4, 94 (1984).

    Google Scholar 

  25. Bailey, D. K. Nature 296, 525–530 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Bell, K. Nature 291, 189–190 (1981).

    Article  ADS  Google Scholar 

  27. McCulloch, M. T. & Wasserburg, G. J. Science 200, 1003–1011 (1978).

    Article  ADS  CAS  Google Scholar 

  28. O'Nions, R. K., Hamilton, P. J. & Hooker, P. J. Earth planet. Sci. Lett. 63, 229–240 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stosch, HG., Lugmair, G. Evolution of the lower continental crust: granulite facies xenoliths from the Eifel, West Germany. Nature 311, 368–370 (1984). https://doi.org/10.1038/311368a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311368a0

  • Springer Nature Limited

This article is cited by

Navigation