Skip to main content
Log in

Thermoluminescence as a palaeothermometer

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Chondritic meteorites are widely regarded as a unique source of information on the chemical and physical processes that occurred in the early Solar System. An important phase in their history is a period of metamorphism1 and thermoluminescence (TL) has proved a powerful technique for exploring this aspect, especially at the low end of the metamorphic spectrum2. The ordinary chondrites as a whole display a 105-fold range in TL sensitivity, while the least metamorphosed, or type 3, ordinary chondrites display a 103-fold range. Associated with this 103-fold range in TL sensitivity are variations in the temperature at which the maximum TL emission occurs, and in the temperature range over which emission occurs3,4. We report here the results of annealing experiments on a little-metamorphosed (type 3.5) ordinary chondrite. The TL emission characteristics of the annealed samples show trends very similar to those observed in meteorites which have naturally been metamorphosed to various extents. The trends are also similar to those observed in annealing experiments on terrestrial albite5–7 where the changes are associated with the low-to high-temperature transformation. These data suggest that the TL phosphor in meteorites is feldspar and that TL can be used to estimate palaeotemperatures for little-metamorphosed and highly-unequilibrated meteorites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dodd, R. T. Geochim. cosmochim. Acta 33, 161–203 (1969).

    Article  ADS  CAS  Google Scholar 

  2. Sears, D. W., Grossman, J. N., Melcher, C. L., Ross, L. M. & Mills, A. A. Nature 287, 791–795 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Sears, D. W., Grossman, J. N. & Melcher, C. L. Geochim. cosmochim. Acta 46, 2471–2481 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Sears, D. W. G. & Weeks, K. S. J. geophys. Res. Suppl. 88, B301–B311 (1983).

    Article  ADS  Google Scholar 

  5. Pasternak, E. S. thesis, Univ. Pennsylvania (1978).

  6. Pasternak, E. S., Gains, A. M. & Levy, P. W. Geol. Soc. Am. Abstr. with Program 8, 1044 (1976).

    Google Scholar 

  7. Levy, P. W. PACT J. 3, 466–480 (1978).

    Google Scholar 

  8. Smith, J. V. J. Geol. 80, 505–525 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Lalou, C., Nordmann, D. & Labyrie, J. C. r. hebd. Séanc. Acad. Sci., Paris D 270, 2401–2404 (1970).

    Google Scholar 

  10. Dodd, R. T. Meteorites (Cambridge University Press, 1981).

  11. Onuma, N., Clayton, R. N. & Mayeda, T. K. Geochim. cosmochim. Acta 36, 157–168 (1972).

    Article  ADS  CAS  Google Scholar 

  12. Mayeda, T. K., Clayton, R. N. & Olsen, E. J. Meteoritics 15, 330–331 (1980).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimon, R., Weeks, K., Keck, B. et al. Thermoluminescence as a palaeothermometer. Nature 311, 363–365 (1984). https://doi.org/10.1038/311363a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311363a0

  • Springer Nature Limited

Navigation