Skip to main content
Log in

Erythrocyte spectrin is comprised of many homologous triple helical segments

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Spectrin is an αβ heterodimeric protein (molecular weight (Mr) = 460,000) which is a major component of the erythrocyte membrane skeleton1–8. The membrane skeleton also includes actin (band 5) and is attached to the membrane via non-covalent associations with two linking proteins9–12. Recently we have reported the amino acid sequence of a peptide of molecular weight 80,000 which comprises the NH2-terminal one-third of the α subunit13,14. This α-subunit peptide contains multiple homologous non-identical sequences with a periodicity of 106 amino acids and an approximate molecular weight of 12,000. It was also established that spectrin is not related to any other proteins whose sequence was known. We now report additional amino acid sequence of peptides representative of other domains of both spectrin subunits. The results suggest that most of the human erythrocyte spectrin molecule is comprised of homologous segments with a 106 amino acid (Mr 12,000) length per segment. Each homologous 106-amino acid segment may be folded into a triple helical structure with a short non-helical region connecting adjacent units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marchesi, V. T. Blood 61, 1–11 (1983).

    CAS  PubMed  Google Scholar 

  2. Haest, C. W. M. Biochim. biophys. Acta 694, 331–352 (1982).

    Article  CAS  Google Scholar 

  3. Goodman, S. R. & Shiffer, K. Am. J. Physiol. 244, C121–C141 (1983).

    Article  CAS  Google Scholar 

  4. Calvert, R., Bennett, P. & Gratzer, W. Eur. J. Biochem. 107, 355–361 (1980).

    Article  CAS  Google Scholar 

  5. Ralston, G. B. Biochim. biophys. Acta 455, 163–172 (1976).

    Article  CAS  Google Scholar 

  6. Morrow, J. S. & Marchesi, V. T. J. Cell Biol. 88, 463–468 (1981).

    Article  CAS  Google Scholar 

  7. Zweig, S. E. & Singer, S. J. Biochem. biophys. Res. Commun. 88, 1147–1157 (1979).

    Article  CAS  Google Scholar 

  8. Speicher, D. W. & Marchesi, V. T. J. Cell Biochem. 18, 479–492 (1982).

    Article  CAS  Google Scholar 

  9. Ungewickell, E., Bennett, P. M., Calvert, R., Ohanian, V. & Gratzer, W. B. Nature 280, 811–814 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Cohen, C. & Branton, D. Nature 279, 163–165 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Tyler, J., Hargreaves, W. & Branton, D. Proc. natn. Acad. Sci. U.S.A. 76, 5192–5196 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Bennett, V. & Stenbuck, P. J. J. biol. Chem. 254, 2533–2541 (1979).

    CAS  PubMed  Google Scholar 

  13. Speicher, D. W., Davis, G., Yurchenco, P. D. & Marchesi, V. T. J. biol. Chem. 258, 14931–14937 (1983).

    CAS  PubMed  Google Scholar 

  14. Speicher, D. W., Davis, G. & Marchesi, V. T. J. biol. Chem. 258, 14938–14947 (1983).

    CAS  PubMed  Google Scholar 

  15. Speicher, D. W., Morrow, J. S., Knowles, W. J. & Marchesi, V. T. J. biol. Chem. 257, 9093–9101 (1982).

    CAS  PubMed  Google Scholar 

  16. Harris, H. W. Jr & Lux, S. E. J. biol. Chem. 255, 11512–11520 (1980).

    CAS  Google Scholar 

  17. Barker, W. C., Ketcham, L. K. & Dayoff, M. O. in Atlas of Protein Sequences and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.) 359–362 (National Biomedical Research Foundation, Washington DC, 1978).

    Google Scholar 

  18. Schwartz, R. M. & Dayhoff, M. O. in Atlas of Protein Sequences and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.) 353–358 (National Biomedical Research Foundation, Washington DC, 1978).

    Google Scholar 

  19. Schulz, G. E. & Schirmner, R. H. in Principles of Protein Structure (ed. Cantor, C. R.) 166–205 (Springer, New York, 1979).

    Google Scholar 

  20. Pink, J. R. L. in Biochemical Evolution (ed. Gutfreund, H.) 231–260 (Cambridge University Press, 1981).

    Google Scholar 

  21. Chou, P. Y. & Fasman, G. D. A. Rev. Biochem. 47, 251–276 (1978).

    Article  CAS  Google Scholar 

  22. Chou, P. Y. & Fasman, G. D. Adv. Enzym. Related Areas molec. Biol. 47, 45–148 (1978).

    CAS  Google Scholar 

  23. Hudson, J. R. & Ralston, G. B. Biochim. biophys. Acta 535, 169–177 (1978).

    Article  CAS  Google Scholar 

  24. Calvert, R., Ungewickell, E. & Gratzer, W. Eur. J. Biochem. 107, 363–367 (1980).

    Article  CAS  Google Scholar 

  25. Shotten, D., Burke, B. & Branton, D. Biochim. biophys. Acta 536, 313–317 (1978).

    Article  Google Scholar 

  26. Shotten, D., Burke, B. & Branton, D. J. molec. Biol. 181, 303–329 (1979).

    Article  Google Scholar 

  27. Morrow, J. S., Speicher, D. W., Knowles, W. J., Hsu, C. J. & Marchesi, V. T. Proc. natn. Acad. Sci. U.S.A. 77, 6592–6596 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Speicher, D. W., Morrow, J. S., Knowles, W. J. & Marchesi, V. T. Proc. natn. Acad. Sci. U.S.A. 77, 5673–5677 (1980).

    Article  ADS  CAS  Google Scholar 

  29. Knowles, W. J. & Bologna, M. L. Meth. Enzym. 965, 305–313 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speicher, D., Marchesi, V. Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311, 177–180 (1984). https://doi.org/10.1038/311177a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311177a0

  • Springer Nature Limited

This article is cited by

Navigation