Skip to main content
Log in

Expression of a bacterial gene in plants by using a viral vector

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Several properties of the cauliflower mosaic virus (CaMV) indicate that it could provide a useful vector for gene transfer in higher plants: (1) it has a relatively small double-stranded genome that can be easily manipulated in vitro1–3; (2) cloned viral DNA is infectious when rubbed onto healthy leaves4,5; (3) virus spreads throughout the plant and can be found in most cells at high copy number. Two regions of the CaMV genome—open reading frames (ORFs) II and VII—do not seem to be essential for infection, as both can be either deleted or expanded by small inserts of foreign DNA6–8. No functional genes have yet been introduced into these ORFs. Here we report the replacement of CaMV ORF II by the R67 plasmid-encoded dihydrofolate reductase (DHFR) gene; this gene (dhfr) confers resistance to methotrexate in Escherichia coli. The chimaeric viral DNA can be stably propagated in turnip plants and the dhfr gene is expressed, producing a functional enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franck, A., Guilley, H., Jonard, G., Richards, K. & Hirth, L. Cell 21, 285–294 (1980).

    Article  CAS  Google Scholar 

  2. Gardner, R. C. et al. Nucleic Acids Res. 9, 2871–2888 (1981).

    Article  CAS  Google Scholar 

  3. Bálázs, E., Guilley, H., Jonard, G. & Richards, K. Gene 19, 239–249 (1982).

    Article  Google Scholar 

  4. Howell, S. H., Walker, L. L. & Dudley, R. K. Science 208, 1265–1267 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Lebeurier, G., Hirth, L., Hohn, T. & Hohn, B. Gene 12, 139–146 (1980).

    Article  CAS  Google Scholar 

  6. Howell, S. H., Walker, L. L. & Walden, R. M. Nature 293, 483–486 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Gronenborn, B., Gardner, R. C., Schaefer, S. & Shepherd, R. J. Nature 294, 773–776 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Dixon, L. K., Koenig, I. & Hohn, T. Gene 25, 189–199 (1983).

    Article  CAS  Google Scholar 

  9. Odell, J. T., Dudley, R. K. & Howell, S. H. Virology 111, 377–385 (1981).

    Article  CAS  Google Scholar 

  10. Guilley, H., Dudley, R. K., Jonard, G., Bálázs, E. & Richards, K. E. Cell 30, 763–773 (1982).

    Article  CAS  Google Scholar 

  11. Covey, S. N. & Hull, R. Virology 111, 463–474 (1981).

    Article  CAS  Google Scholar 

  12. O'Hare, K., Benoist, C. & Breathnach, R. Proc. natn. Acad. Sci. U.S.A. 78, 1527–1531 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Brisson, N. & Hohn, T. Gene 28, 265–269 (1984).

    Article  Google Scholar 

  14. Blakley, R. L. The Biochemistry of Folic Acid and Related Pteridins, 139–187 (North-Holland, Amsterdam, 1969).

    Google Scholar 

  15. Pattishall, K. H., Acar, J., Burchall, J. J., Goldstein, F. W. & Harvey, R. J. J. biol. Chem. 252, 2319–2323 (1977).

    CAS  PubMed  Google Scholar 

  16. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  17. Gardner, R. C. & Shepherd, R. J. Virology 106, 159–161 (1980).

    Article  CAS  Google Scholar 

  18. Laemmli, U. K. Nature new Biol. 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Towbin, H., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. USA 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Fling, M. E. & Elwell, L. P. J. Bact. 141, 779–785 (1980).

    CAS  Google Scholar 

  21. Nitsch, J. P. & Nitsch, C. Science 163, 83–87 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brisson, N., Paszkowski, J., Penswick, J. et al. Expression of a bacterial gene in plants by using a viral vector. Nature 310, 511–514 (1984). https://doi.org/10.1038/310511a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310511a0

  • Springer Nature Limited

This article is cited by

Navigation