Skip to main content
Log in

Conservation of the sizes for one but not another class of exons in two chick collagen genes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Type III collagen is often found in the same tissues as type I collagen, yet the function and nature of the fibrils formed by the two collagens differ markedly1–3. To understand the evolutionary history of the collagen gene family in more detail, we isolated the gene for type III collagen and compared its structure with that of the gene for α2(I) collagen4–9. This comparison points to a remarkable conservation in the size distribution of the exons coding for the helical part of these two collagen polypeptides: equivalent amino acid segments in the helical domain of each polypeptide are encoded by exons of equal sizes in each gene. This suggests that after the interstitial collagen genes had been duplicated from a common ancestor about 2–5 × 108 years ago10, no recombinations between these exons were tolerated, although the same recombinational phenomena must have played an important part in shaping the structure of the progenitor for these genes. This fixation of the size distribution of the exons which code for the interstitial collagen helical domains is found despite the persistence in these exons of sequence elements that should have favoured recombinational rearrangements, and contrasts with the variations in the pattern of sizes of some exons coding for the amino and carboxyl propeptides of these collagens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Remachandran, G. N. & Reddi, A. H. (eds) Biochemistry of Collagen (Plenum, New York, 1980).

  2. Bornstein, P. & Sage, H. A. Rev. Biochem. 49, 954–1003 (1980).

    Article  Google Scholar 

  3. Miller, E. J. & Gray, S. Meth. Enzym. 82, 3–32 (1982).

    Article  CAS  Google Scholar 

  4. Ohkubo, H. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7059–7063 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Wozney, J., Hanahan, D., Tate, V., Boedtker, H. & Doty, P. Nature 294, 129–135 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Yamada, Y. et al. Cell 22, 887–892 (1980).

    Article  CAS  Google Scholar 

  7. Vogeli, G. et al. Proc. natn. Acad. Sci. U.S.A. 78, 5334–5338 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Dickson, L. A. et al. J. biol. Chem. 256, 8407–8415 (1981).

    CAS  PubMed  Google Scholar 

  9. Tate, V., Finer, M., Boedtker, H. & Doty, P. Cold Spring Harb. Symp. quant. Biol. 47, 1039–1049 (1982).

    Article  CAS  Google Scholar 

  10. Dickerson, R. E. J. molec. Evol. 1, 26–45 (1971).

    Article  ADS  CAS  Google Scholar 

  11. Yamada, Y., Mudryj, M., Sullivan, M. & de Crombrugghe, B. J. biol. Chem. 258, 2758–2761 (1983).

    CAS  PubMed  Google Scholar 

  12. Yamada, Y., Kuhn, K. & de Crombrugghe, B. Nucleic Acids Res. 11, 2733–2744 (1983).

    Article  CAS  Google Scholar 

  13. Yamada, Y., Mudryj, M. & de Crombrugghe, B. J. biol. Chem. 258, 14914–14919 (1983).

    CAS  PubMed  Google Scholar 

  14. Munson, J. M. & McCarthy, B. J. DNA 1, 59–69 (1982).

    Article  Google Scholar 

  15. Mon-Li Chu et al. Nature 310, 337–340 (1984).

    Article  ADS  Google Scholar 

  16. Tate, V. E., Finer, M. H., Boedtker, H. & Doty, P. Nucleic Acids Res. 11, 91–104 (1983).

    Article  CAS  Google Scholar 

  17. Stumph, W. E., Kristo, P., Tsai, M. J. & O'Malley, B. W. Nucleic Acids Res. 9, 5383–5397 (1981).

    Article  CAS  Google Scholar 

  18. Efstradiatis, A. et al. Cell 21, 653–668 (1980).

    Article  Google Scholar 

  19. Eiferman, F. A., Young, P. R., Scott, R. W. & Tilghman, S. M. Nature 294, 24–31 (1981).

    Article  Google Scholar 

  20. Heilig, R., Perrin, F., Gannon, F., Mandel, J. L. & Chambon, P. Cell 20, 625–637 (1980).

    Article  CAS  Google Scholar 

  21. Royal, A. et al. Nature 279, 125–132 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Yamawaki-Kataoka, Y., Miyata, T. & Honjo, T. Nucleic Acids Res. 9, 1365–1381 (1981).

    Article  CAS  Google Scholar 

  23. Wahli, W., David, I. B., Wyler, T., Weber, R. & Ryffel, G. V. Cell 20, 107–117 (1980).

    Article  CAS  Google Scholar 

  24. Nishioka, Y. & Leder, P. Cell 18, 875–882 (1979).

    Article  CAS  Google Scholar 

  25. Konkel, D. A., Tilghman, S. M. & Leder, P. Cell 15, 1125–1132 (1978).

    Article  CAS  Google Scholar 

  26. Patient, R. K., Elkington, J. A., Kay, R. M. & Williams, J. G. Cell 21, 565–573 (1980).

    Article  CAS  Google Scholar 

  27. Rabbitts, T. H., Forster, A. & Milstein, C. P. Nucleic Acids Res. 9, 4509–4524 (1981).

    Article  CAS  Google Scholar 

  28. Sargent, T. D., Jagodzinski, L. L., Yang, M. & Bonner, J. Molec. cell. Biol. 1, 871–883 (1981).

    Article  CAS  Google Scholar 

  29. Nishioka, Y., Leder, A. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 77, 2806–2809 (1980).

    Article  ADS  CAS  Google Scholar 

  30. Wilde, C. D., Crowther, C. E. & Cowan, N. J. Science 217, 549–552 (1982).

    Article  ADS  CAS  Google Scholar 

  31. Maniatis, T. et al. Cell 15, 687–701 (1978).

    Article  CAS  Google Scholar 

  32. Yamamoto, T. et al. J. biol. Chem. 255, 2612–2615 (1980).

    CAS  PubMed  Google Scholar 

  33. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  34. Tilgham, S. M., Curtis, P. J., Tiemeier, D. C., Leder, P. & Weissman, C. Proc. natn. Acad. Sci. U.S.A. 75, 1309–1313 (1978).

    Article  ADS  Google Scholar 

  35. Sayer, J. M. & King, A. H. Biochemistry 20, 2621–2617 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, Y., Liau, G., Mudryj, M. et al. Conservation of the sizes for one but not another class of exons in two chick collagen genes. Nature 310, 333–337 (1984). https://doi.org/10.1038/310333a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310333a0

  • Springer Nature Limited

This article is cited by

Navigation